2022 Fiscal Year Final Research Report
Clarification of formation and strengthening mechanisms of deformation kink by the mechanical analyses
Project Area | Materials science on mille-feullie structure -Developement of next-generation structural materials guided by a new strengthen principle- |
Project/Area Number |
18H05478
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Nagoya Institute of Technology (2021-2022) Osaka University (2018-2020) |
Principal Investigator |
Hagihara Koji 名古屋工業大学, 工学(系)研究科(研究院), 教授 (10346182)
|
Co-Investigator(Kenkyū-buntansha) |
岸田 恭輔 京都大学, 工学研究科, 准教授 (20354178)
榎 学 東京大学, 大学院工学系研究科(工学部), 教授 (70201960)
|
Project Period (FY) |
2018-06-29 – 2023-03-31
|
Keywords | キンク変形 / ミルフィーユ合金 / 強度 / 延性 / 転位 / 力学特性 / 単結晶 |
Outline of Final Research Achievements |
The understanding of deformation behavior associated with kink band formation in mille-feuille-structured materials was examined focusing on the (1) kink formation and (2) kink strengthening, and the effects of various microstructural factors were clarified. Through this, we finally clarified the new strengthening strategy using kink bands, that is, the "generalized mille-feuille criteria". Specifically, (1) we found the formation of kink bands can be induced not only in “structural mille-feuille materials” such as LPSO phase and Max phases, but also in “microstructural mille-feuille materials” consisting of multiple phases with lamellar microstructure at the micron level, in a wide variety of alloy systems such as Mg-, Al-, Ti- and Fe-based alloys. (2) By focusing on structural mille-feuille alloy single crystals, etc., it was demonstrated that the kink band interface causes a large resistance that cannot be explained by the conventional dislocation model.
|
Free Research Field |
材料強度学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により,「軟質層」と「硬質層」の相互積層によるミルフィーユ構造制御がキンク帯誘導を実現するという,本プロジェクトの根幹を成す仮説が実証され,さらにキンク帯形成による材料強化がLPSO相以外においても世界で初めて実証された.このことはまさに「ミルフィーユ構造制御」が新規高機能材料創成の新たな一方策となり得ることを示すものである.このことはCO2削減,エネルギー問題を解決する日本発の新材料創製の足掛かりとなると期待され,その学術的,社会的意義は極めて大きい.
|