2023 Fiscal Year Final Research Report
Precise Synthesis of Functional Molecules for Aquatic Functional Materials
Project Area | Aquatic Functional Materials: Creation of New Materials Science for Environment-Friendly and Active Functions |
Project/Area Number |
19H05716
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Kanagawa University |
Principal Investigator |
Tsuji Hayato 神奈川大学, 理学部, 教授 (20346050)
|
Co-Investigator(Kenkyū-buntansha) |
武田 洋平 大阪大学, 大学院工学研究科, 准教授 (60608785)
福島 和樹 東京大学, 大学院工学系研究科(工学部), 准教授 (70623817)
|
Project Period (FY) |
2019-06-28 – 2024-03-31
|
Keywords | 有機合成化学 / 有機半導体 / 光機能性分子 / 環境応答性分子 / バイオ・環境調和高分子 |
Outline of Final Research Achievements |
This study aimed at the precise synthesis of aqueous functional materials that “connect” the aqueous and non-aqueous interfaces to draw the functions of hydrophobic π-electronic organic materials in aqueous environments. To this end, we started with developing synthetic methods and finding fundamental structures suitable for aqueous functional materials. As a result, new organic functional materials, such as those modulating optical functions in response to water molecules, have been developed. Bioenvironmentally functional polymers with biocompatibility and hydrolyzability by interfacial hydration have been developed, and the relationship between water content and functions has been clarified. New organic laser materials were also developed by hybridizing such polymers and hydrophobic π-conjugated photofunctional molecules. The structure-function relationship based on the control of aggregation of luminescent molecules in aqueous solutions has been also elucidated.
|
Free Research Field |
化学
|
Academic Significance and Societal Importance of the Research Achievements |
系統的かつ多角的な検討により、新材料の開発に成功するとともに、疎水性π電子系有機材料の光機能性を水圏環境下で発揮させるための構造的要件の抽出および疎水性機能分子の凝集構造―機能相関の解明に成功した。新開発材料の各種精密計測によって、材料と水分子との相互作用の理解が深まったことから、学理の構築に貢献する知見が得られたと考えている。また、生体親和性と分解性を両立する材料の開発にも成功し、これと疎水性発光分子のハイブリッド材料などの新材料も開発できた。これらは生体高分子材料としての応用が見込まれ、成果の社会還元が期待される。
|