2023 Fiscal Year Final Research Report
Exploration of Bio and Environmental Functions of Aquatic Functional Materials
Project Area | Aquatic Functional Materials: Creation of New Materials Science for Environment-Friendly and Active Functions |
Project/Area Number |
19H05720
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Kyushu University |
Principal Investigator |
Tanaka Masaru 九州大学, 先導物質化学研究所, 教授 (00322850)
|
Co-Investigator(Kenkyū-buntansha) |
藤井 義久 三重大学, 工学研究科, 准教授 (70578062)
|
Project Period (FY) |
2019-06-28 – 2024-03-31
|
Keywords | 生体親和性 / 界面ダイナミクス / 密着性 / 界面レオロジー / 合成高分子 / 細胞接着 / 中間水 / バイオ界面 |
Outline of Final Research Achievements |
To achieve our goal for developing bio and environmental functions of aquatic functional materials that are stable in water and have high functionality, we have successfully controlled the hydration water, particularly the intermediate water, which plays a crucial role in aquatic functionality in vivo, with biomaterial synthesis and cell function control based on ring opening metathesis polymerization at the core of our research. Furthermore, we have been making efforts to better understand and control the hydration state at the interface by employing various advanced techniques, including synchrotron infrared spectroscopy, neutron reflectometry, and frequency-modulated atomic force microscopy. Finally, we have established many close collaborations with researchers in this project. Consequently, we elucidated the mechanism by which hydration water forms on the surface of biocompatible materials, which promotes the development of “Aquatic Functional Materials”.
|
Free Research Field |
高分子バイオマテリアル
|
Academic Significance and Societal Importance of the Research Achievements |
材料の化学構造制御と含水による物性変化の精密解析により得られた成果は、界面の水和構造と分子運動性、および、特定の生体分子や細胞の選択的認識(はたらく)機構の解明に繋がった。また、水を機能分子として捉えることで、これまで可塑化として巨視的に理解されていた高分子の含水状態を、官能基の局所運動とそれらが誘起する生体親和性と関連付け分子論的に理解が可能になり、高分子基礎科学の発展としても学術的意義が大きい。さらに、中間水量と血小板粘着数の相関解明や生体親和性に優れる材料のスクリーニング技術の確立は、体外式膜型人工肺やステントなどの表面処理材の開発加速にも繋がり、その社会的意義は計り知れない。
|