2023 Fiscal Year Final Research Report
Systems modelling of hyper-adaptation mechanism for reconstruction of neural structure
Project Area | Hyper-adaptability for overcoming body-brain dysfunction: Integrated empirical and system theoretical approaches |
Project/Area Number |
19H05727
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Complex systems
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Kondo Toshiyuki 東京農工大学, 工学(系)研究科(研究院), 教授 (60323820)
|
Co-Investigator(Kenkyū-buntansha) |
千葉 龍介 旭川医科大学, 医学部, 准教授 (80396936)
宮下 恵 東京農工大学, 工学(系)研究科(研究院), 助教 (60963311)
矢野 史朗 東京農工大学, 工学(系)研究科(研究院), 助教 (90636789)
|
Project Period (FY) |
2019-06-28 – 2024-03-31
|
Keywords | テンソル分解 / 動的グラフ構造解析 / 筋骨格モデル / 運動学習 |
Outline of Final Research Achievements |
The purpose of this study was to constructively clarify the reconstruction of brain structures from the standpoint of systems engineering, and addressed (1) statistical modeling and ensuring interpretability of long-term multimodal data, (2) gray-box modeling and aging simulation, and (3) motor learning through robotic intervention. In (1), we developed an analytical method that combines the extraction of low-dimensional structures by Tensor decomposition and ynamic graph structure estimation (TVGL), and verified its validity using brain activity data provided from the neuroscience group. In (2), we constructed a gray-box model of musculoskeletal and brain network models, and verified its validity by simulation experiement. In (3), we conducted motor learning experiments using a system in which a human and a robot were combined using VR amd robotic technology, and clarified the conditions under which learning is facilitated.
|
Free Research Field |
身体教育学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、脳内神経構造に内在する低次元構造の時間的変化(例えば、運動学習の前後や障害の前後)を可視化する手法、脳内運動制御構造を数理モデルとして構成し、シミュレーションする技術、人の運動学習・機能回復過程に介入するロボット技術を開発した。これらの波及効果として、Systems Neurorehabilitationという新たな学際研究領域の創成につながると期待される。
|