• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Systems modelling of hyper-adaptation mechanism for reconstruction of neural structure

Planned Research

  • PDF
Project AreaHyper-adaptability for overcoming body-brain dysfunction: Integrated empirical and system theoretical approaches
Project/Area Number 19H05727
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Complex systems
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Kondo Toshiyuki  東京農工大学, 工学(系)研究科(研究院), 教授 (60323820)

Co-Investigator(Kenkyū-buntansha) 千葉 龍介  旭川医科大学, 医学部, 准教授 (80396936)
宮下 恵  東京農工大学, 工学(系)研究科(研究院), 助教 (60963311)
矢野 史朗  東京農工大学, 工学(系)研究科(研究院), 助教 (90636789)
Project Period (FY) 2019-06-28 – 2024-03-31
Keywordsテンソル分解 / 動的グラフ構造解析 / 筋骨格モデル / 運動学習
Outline of Final Research Achievements

The purpose of this study was to constructively clarify the reconstruction of brain structures from the standpoint of systems engineering, and addressed (1) statistical modeling and ensuring interpretability of long-term multimodal data, (2) gray-box modeling and aging simulation, and (3) motor learning through robotic intervention. In (1), we developed an analytical method that combines the extraction of low-dimensional structures by Tensor decomposition and ynamic graph structure estimation (TVGL), and verified its validity using brain activity data provided from the neuroscience group. In (2), we constructed a gray-box model of musculoskeletal and brain network models, and verified its validity by simulation experiement. In (3), we conducted motor learning experiments using a system in which a human and a robot were combined using VR amd robotic technology, and clarified the conditions under which learning is facilitated.

Free Research Field

身体教育学

Academic Significance and Societal Importance of the Research Achievements

本研究では、脳内神経構造に内在する低次元構造の時間的変化(例えば、運動学習の前後や障害の前後)を可視化する手法、脳内運動制御構造を数理モデルとして構成し、シミュレーションする技術、人の運動学習・機能回復過程に介入するロボット技術を開発した。これらの波及効果として、Systems Neurorehabilitationという新たな学際研究領域の創成につながると期待される。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi