2021 Fiscal Year Annual Research Report
Nanometer-scale spatial evaluation of dynamic exciton by transient microwave spectroscopy
Project Area | Dynamic Exciton: Emerging Science and Innovation |
Project/Area Number |
20H05836
|
Research Institution | Osaka University |
Principal Investigator |
佐伯 昭紀 大阪大学, 工学研究科, 教授 (10362625)
|
Project Period (FY) |
2020-11-19 – 2025-03-31
|
Keywords | 有機太陽電池 / ドナー・アクセプター / 時間分解マイクロ波伝導度(TRMC) / 時空間分解 / 動的エキシトン / 電荷キャリア移動度 / 非フラーレン電子アクセプター / 誘電物性 |
Outline of Annual Research Achievements |
核や格子の運動、スピンと軌道の相互作用などが動的効果として時間発展的に働く「動的エキシトン」は、光化学で重要な研究課題である。そこで、動的エキシトンの時間と空間での理解に向けて、独自のマイクロ波分光を用いた光電気および誘電ダイナミクスの評価に着目する。この時間分解マイクロ波伝導度(TRMC)法は、光パルス照射で過渡的に生じた電荷キャリアや誘電変化をGHz電磁波(マイクロ波)で非接触に評価する手法である。通常の接触型電極評価法と異なり、ナノメートル空間の局所的な電気・誘電応答を観察でき、ns~msの時間スケールのダイナミクスが得られる。さらに、代表者独自の周波数分散評価、外部電場印加など多彩な評価軸を駆使し、動的エキシトンの学理構築の強力な手段へと発展させる。D・A界面を制御した試料や任意の積層試料を評価・解析することで、素子評価だけでは判別できない電荷・エネルギー移動過程を解明する。 本年度は、近年注目を集めている非フラーレン電子アクセプター(non-fullerene acceptor: NFA)と共役高分子から成る有機薄膜太陽電池(OPV)の現状の把握と新たな超ハイスループット材料探索手法の確立を目指し、機械学習による高分子設計の改良を試みた。特にデータ数をこれまでの566個から1318個に増やし、その統計的な解析と機械学習における記述子の改善を行った。従来のECFP6に変えてMordred Descriptorを採用し、高分子を構成する原子の種類や芳香族環に対するアルキル鎖の比率などを検討した結果、予測を説明できる機械学習モデルの構築に成功した。また、有機無機ハイブリッド太陽電池材料における、性能支配因子を明らかにするための機械学習モデルを構築し、価電子帯準位とTRMC測定で得られる信号強度が素子性能を決定する最も重要なパラメータであることを明らかにした。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
本研究課題では、「動的エキシトン学理に直結する光電気・誘電物性の評価とモデル構築」および「動的エキシトン学理解明を志向したD-A連結分子の設計」の2項目の研究を行う。第1項目では、A01班(動的エキシトン創成)が設計したD・A分子の光電気・誘電物性評価を行い、核や格子の運動やSOCなどの動的効果を時空間スケールで解明することを目的とする。また、A03班(動的エキシトン機能)が推進する光学・生体材料の機能を説明するための物性測定を行い、A02班(動的エキシトン解析)と連携して光電気・誘電物性の評価と包括的なモデルの構築を目指す。現在、温度変化(LT/HT-TRMC)測定およびポンプ・プッシュ(PP-TRMC)測定からはキャリア伝導モデルやトラップ状態、時空間分解測定(S-TRMC)からはキャリアダイナミクスの空間分布測定、飛行時間同時測定(TOF-TRMC)が稼働できる状況となり、キャリア輸送の時空間発展に伴う緩和過程を評価している。 第2項目では、A01とA03班から提供されるD・A分子に加え、本研究課題では動的エキシトン学理解明を志向したD-A連結分子を独自に設計・合成し、その光電気特性を評価する。光吸収や電界注入による励起子の生成とその緩和過程の制御は、素子性能に直結する。狭バンドギャップ化に伴い、エネルギーギャップ則に従って励起子の寿命が極端に短くなることからも、振電相互作用の制御は極めて重要である。その手法として、振動モードを低波数にシフトさせるため、非対称分子の設計、元素置換、立体化学・位置規則性を制御したD-A連結分子を合成する。いずれの場合も高分子骨格の電子・振動状態が変化するだけでなく凝集形態や混合膜構造も同時に変化するため、構造解析・時空間ダイナミクス・エネルギー準位に関する包括的物性評価が必要である。
|
Strategy for Future Research Activity |
近年のOPV変換効率は、ITICやY6に代表されるA-D-A型非フラーレン型アクセプター(NFA)の登場により大きく向上している。これまでの機械学習モデルでは主にITICをN型半導体として対象としてきたが、高効率Y6材料に対しても同様にスクリーニングを行い、高性能が期待できる高分子を設計・合成する。また、Y6分子は狭バンドギャップにもかかわらず、励起子拡散距離は中程度でエネルギー損失も小さい。特に振電相互作用とSOCによるCT状態のエネルギー準位縮退や、エキシトン・フォノンカップリングが関与する励起子の緩和過程、ポーラロン・フォノンカップリングが関与する電子移動度の緩和過程などが挙げられるが、詳細は不明である。そこで、ポリマー:NFA混合膜のTRMC測定を行い、動的エキシトン状態のCT錯体ダイナミクスをナノ秒~ミリ秒で追跡する。さらに、TOF-TRMCを用いて電子移動度の緩和過程を直接観察する。これらの評価と並行して、A01班・A03班から提供されるD・A分子(NFA等)も同様の評価を行い、材料ライブラリーを増やすことで、一般化可能なモデル構築を行う。高分子太陽電池だけでなく、有機無機ハイブリッド太陽電池に対しても、研究者独自の評価法を用いて材料スクリーニングや性能支配因子解明研究を行っていく。これらの連携研究で得られる知見を動的エキシトン効果の検証とモデル構築に適用し、その学理探究につなげる。TRMCによるD・A分子の光電気特性、誘電物性評価を行い、以後引き続いて動的エキシトン実証を志向したD-A分子の合成と機能・評価を行い、動的エキシトン学理構築を目指す。
|
Research Products
(60 results)