2023 Fiscal Year Final Research Report
Development of hayabusa-type nanomachines
Project Area | Innovative nanotechnology for probing molecular landscapes in the brain |
Project/Area Number |
21H05090
|
Research Category |
Grant-in-Aid for Transformative Research Areas (B)
|
Allocation Type | Single-year Grants |
Review Section |
Transformative Research Areas, Section (II)
|
Research Institution | Tokyo Institute of Technology (2023) The University of Tokyo (2021-2022) |
Principal Investigator |
Anraku Yasutaka 東京工業大学, 物質理工学院, 准教授 (60581585)
|
Co-Investigator(Kenkyū-buntansha) |
中木戸 誠 東京大学, 大学院工学系研究科(工学部), 講師 (80784511)
|
Project Period (FY) |
2021-08-23 – 2024-03-31
|
Keywords | 高分子 / 脳 / 高分子集合体 / ナノマシン / 抗体工学 |
Outline of Final Research Achievements |
In this study, we developed nanomachines capable of passing the blood-brain barrier to collect brain molecules and transport them back into the bloodstream. Specifically, we investigated (1) the development of nanomachines that undergo structural changes in response to the brain environment to collect brain molecules, and (2) the development of nanomachines that return from the brain into the bloodstream. First, we synthesized novel block copolymers with the desired functions. Regarding (1), we confirmed that polymer micelles with a diameter of approximately 30 nm in the blood environment transform into polymer vesicles with a diameter of approximately 150 nm in the brain environment. We also confirmed that these structural changes enable the sampling of neurotransmitters. As for (2), we succeeded in developing nanomachines capable of moving the micelles from the brain into the bloodstream by incorporating Fc fragments on their surface.
|
Free Research Field |
バイオマテリアル
|
Academic Significance and Societal Importance of the Research Achievements |
「脳内で集合体の構造変化を惹起」することで「脳分子を回収」し、さらに「血液中に帰還する」ことで早期診断へ展開する「はやぶさ型ナノマシン」については、脳へ多量の高分子集合体を送達可能な申請者の技術なしでは着想もしない独創的な研究であり、脳内外の物質移動研究に新たな学術的視点をもたらすことが想定される。幅広い精神神経疾患や脳炎など広範な疾患についても大きく貢献することが確信される。また高分子/材料設計の観点からも、生体適合性・標的指向性・環境応答性という異なる機能を空間的に制御された形で構造内部に配置する仕掛けを創り込むなど、独創性に秀でた生体材料設計プロセスを当該分野にもたらす意義を有する。
|