• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of solid oxide electrolyzer utilizing hydrogen spilover

Planned Research

  • PDF
Project AreaSurface hydrogen engineering: Utilization of spillover hydrogen and verification of quantum tunneling effect
Project/Area Number 21H05100
Research Category

Grant-in-Aid for Transformative Research Areas (B)

Allocation TypeSingle-year Grants
Review Section Transformative Research Areas, Section (II)
Research InstitutionHokkaido University

Principal Investigator

Aoki Yoshitaka  北海道大学, 工学研究院, 教授 (50360475)

Project Period (FY) 2021-08-23 – 2024-03-31
Keywords電気化学アンモニア合成 / プロトン固体酸化物電解セル
Outline of Final Research Achievements

In this study, VN0.9, a well-known rock-salt type metal nitride, exhibits hydrogen grain boundary diffusivity, which can be interpreted as a 'hydrogen spillover' in the internal surface of the polycrystaline bodies. VN0.9 was found to efficienct cathode materials for electrochemical ammonia synthesis by H2O-N2 coelectrolytic H+-SOC. Analysis of electrochemical hydrogen pumping revealed that the VN0.9 cathode effectively suppress hydrogen evolution reaction at the surface, while having hydrogen permeability due to hydrogen ion grain boundary diffusion. Therefore, a faradaic efficiency of 12% for H2O-N2 co-electrolytic ammonia synthesis was achieved using a cell with a Ru-loaded VN0.9 cathode.

Free Research Field

エネルギー化学

Academic Significance and Societal Importance of the Research Achievements

現在のハーバーボッシュ法によ依るアンモニア合成は、化石燃料由来の水素を大量に消費するため、低炭素社技術への転換が求められている。固体電解セルを使ったH2O-N2共電解による電気化学的アンモニア合成は、水を水素源として窒素還元を行うため、次世代プロセスとして期待されている。一方位でこれまでの共電解のファラデー効率は0.1%程度と、非常に低いものであった。本研究成果はこの生成効率は二けた上昇させるものであり、化学産業の低炭素化に大きく貢献するものである。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi