2022 Fiscal Year Annual Research Report
Digital Twin Science for Creation of Materials by Super Thermal Field
Project Area | Creation of Materials by Super Thermal Field: Neo-3D printing by Manipulating Atomic Arrangement through Giant Potential Gradient |
Project/Area Number |
21H05193
|
Research Institution | Osaka University |
Principal Investigator |
小泉 雄一郎 大阪大学, 大学院工学研究科, 教授 (10322174)
|
Co-Investigator(Kenkyū-buntansha) |
奥川 将行 大阪大学, 大学院工学研究科, 助教 (70847160)
|
Project Period (FY) |
2021-09-10 – 2026-03-31
|
Keywords | Digital Twin / Additive Manufacturing / Solidification / Crystal growth / Super-thermal Field / Process monitoring / CtFD simulation / Phase- field method |
Outline of Annual Research Achievements |
領域内共通試料とした316Lステンレス鋼に加え、種々のスレンレス鋼、Fe-Cr-Co合金、Fe-Al合金などのFe系合金などへのEB高速走査実験およびLB高速走査実験を行った。316L鋼については、溶融領域表面の温度分布変化モニタリングと凝固組織の解析の結果に基づき造形実験を行いプロセスモニタリングにも成功した。特に、レーザーPBFでのmicro-Helix法による316Lステンレス鋼の単結晶化にも成功し、領域の研究の進展に大きく貢献した。その成果をまとめた論文が、領域で企画したMaterials TransactionsのSpecial Issue "Creation of Materials by Super-Thermal Field"に掲載決定した。EB高速走査実験についても2021年度にEB積層造形装置に取り付けた観察用窓に、高速度カメラ用ステージを設置し、実際に観察を行った。また、他の班との連携も進め、レーザビーム照射時による溶融凝固の熱流体力学(CtFD)シミュレーションによる温度分布変化の解析を、その場観察実験系やチタン合金を対象に実施した。さらに、鉄系合金に昨年度よりも鋼種数を2倍以上に増して実施し、CtFDシミュレーションの結果を併せて凝固条件と冶金学的性質との相関データを拡充した。着実にデータを取得しており当初の計画以上に進展している。当初は2023年度に予定していたセラミックスへの電子ビーム照射の実験もアルミナを用いて前倒しで実施した。その成果を発表した学生が受賞するなど、領域内外の研究者からも高い評価を得た。絶対安定性の発現に関する研究が、A02班やA03班の研究にも広まり、連携研究も進んでいる。CAシミュレーションなど公募研究との重複を避け中止した部分もあるが、計画よりも前倒しで進展している部分が多く全体としては計画以上に進展している。
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
2022年度には、領域内共通試料とした316Lステンレス鋼に加え、Fe-Cr-Co合金、Fe-Al合金、各種ステンレス鋼といった当初予定していた数よりも多い数のFe系合金などへのEB高速走査実験およびLB高速走査実験を行った。316Lステンレス鋼については、ビーム照射から造形までの一連のプロセスを詳細に評価した。溶融領域表面の温度分布変化モニタリングと凝固組織の解析の結果に基づいて設計した条件での造形実験を行うことで、単結晶の育成に短期間で成功し、プロセスモニタリングにも順調に成功した。特にビーム走査とEB高速走査実験では2021年度にEB積層造形装置に取り付けた観察用窓に高速度カメラ用ステージを設置し、効率的に実験できるようにした。また、他の計画班、公募研究者との連携も進展している。レーザービーム照射時による溶融凝固の熱流体力学(CtFD)シミュレーションによる温度分布変化の解析を、その場観察実験系や、チタン合金を対象にして実施した。さらに、鉄系合金に関しては昨年度の3種から9種へと鋼種を増やして照射実験と組織観察まで実施し、冶金学的性質との相関データを拡充した。着実にデータを取得し当初の計画以上に進展している。さらに当初は2023年度に予定していたセラミックスへの電子ビーム照射の実験も前倒しして実施した。その成果を金属学会の研究会で発表した学生が優秀発表賞を受賞するとともに、2023年3月の金属学会で領域外の研究者から賛辞を得るなど高い評価を得ている。 また、絶対安定性発現に関する実験データについては、A02班のデータ科学手法取り入れたシミュレーションや、A03班の造形実験においても取得されはじめ、領域内連携研究も加速度的に進んでいる。当初予定したCAシミュレーション、公募研究との重複を避けて中止し、その分全体として計画よりも進展していると言える。
|
Strategy for Future Research Activity |
鉄鋼、Ti合金を中心に金属材料へのPBF用びーム(EB、LB)の照射による急速溶融・凝固挙動を、巨大な温度勾配(超温度場)に注目したモニタリング、熱流体力学(CtFD)計 算、フェーズフィールド(PF)計算を中心としたシミュレーション、実験では高速度カメラと2色法による表面の温度分布変化測定の手法が確立され、CtFD計算での温度勾配 (G)、凝固速度(R)、流速(U)、凝固方向(Φ)を評価のデータも拡充してきた。融体物性についてその実測を専門とする公募研究者の参入もあり検証が可能となった。A01-b班のインフォマティックスと連携も進んできた。今後は、これら研究をさらに進めてデータを拡充し。材料の各種物性、冶金学的性質と単結晶化および微細粒化の傾向との相関から単結晶化と微細粒化の指針を得る。これにより超温度場での結晶成長のデジタルツインを構築し、A03班のスーパーチタンの基となるTi合金、共通試料とした316L鋼、さらに機能性が期待されるFe系合金を対象に、 (1) 絶対安定性発現、マランゴニ効果によるデンドライトの溶断など、超温度場特有の現象と結晶成長との関係に注目して解析するとともに、超温度場材料創成学の理論体系構築に資する。さらに、2022年度に先行着手した、セラミックスへの電子ビーム照射の研究を実験、計算の両面で、A03のレーザー照射の研究とも連携して推進し、金属とセラミックスの、レーザー、電子ビームとの相互作用の類似点と相違点を整理して理解することを目指す。具体的には (1-1) EBの高速走査実験、(1-2) LBの高速走査実験、(1-3) 凝固界面挙動解析、凝(1-4) 凝固界面TEM解析を、 (2-1)PFシミュレーションを、セラミックスでも実施し、金属合金の結果と比較してビームの種類と材料との相互作用と超温度場と関係を解明する。
|