• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Exploring the limits of computation from mathematical logic

Planned Research

  • PDF
Project AreaA multifaceted approach toward understanding the limitations of computation
Project/Area Number 24106002
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionKyoto University

Principal Investigator

Makino Kazuhisa  京都大学, 数理解析研究所, 教授 (60294162)

Co-Investigator(Kenkyū-buntansha) 河村 彰星  東京大学, 大学院総合文化研究科, 講師 (20600117)
垣村 尚徳  東京大学, 大学院総合文化研究科, 講師 (30508180)
小林 佑輔  筑波大学, システム情報系, 准教授 (40581591)
ロスマン ベンジャミン  国立情報学研究所, 大学共同利用機関等の部局等, 特任研究員 (90599177)
Research Collaborator COOK Stephen  トロント大学, 計算機科学部, 名誉教授
ZIEGLER Martin  KAIST大学, 計算機科学部, 教授
GURVICH Vladimir  ロシア国立高等経済学院, 教授
BOROS Endre  ラトガース大学, 経営学部, 教授
Project Period (FY) 2012-06-28 – 2017-03-31
Keywordscomputation
Outline of Final Research Achievements

In this project, we explore the limits of computation from mathematical logic.We obtain several results. Here we describe three instances. We show that the difference between deterministic and nondeterministic space complexity. Namely, we prove that for any k=o(log n), NC[k] is not equal to AC[k]. We also improve the nonpolynomial lower bound for monotone circuit complexity. We study weighted linear matroid parity problem which is one of the basic combinatorial optimization problems. We provide a polynomial time algorithm for the problem.

Free Research Field

theory of computation

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi