• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Exploring the Limits of Computation from the Statistical Physics

Planned Research

  • PDF
Project AreaA multifaceted approach toward understanding the limitations of computation
Project/Area Number 24106008
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionTokyo Institute of Technology

Principal Investigator

Watanabe Osamu  東京工業大学, 情報理工学院, 教授 (80158617)

Co-Investigator(Kenkyū-buntansha) 安藤 映  崇城大学, 情報学部, 助教 (20583511)
伊東 利哉  東京工業大学, 情報理工学研究科, 教授 (20184674)
小柴 健史  埼玉大学, 理工学研究科, 教授 (60400800)
山本 真基  成蹊大学, 理工学部, 准教授 (50432414)
森 立平  東京工業大学, 情報理工学研究科, 助教 (60732857)
Co-Investigator(Renkei-kenkyūsha) KABASHIMA Yoshiyuki  東京工業大学, 情報理工学院, 教授 (80260652)
HUKUSHIMA Koji  東京大学, 総合文化研究科, 准教授 (80282606)
Research Collaborator Krzakala Florent  Ecole Superieure de Physique et Chimie Industrielle
Zdeborova Lenka  CNRS, Institute of Theoret. Physics at CEA
Zhou Haijun  Chinese Academy of Sci., Inst. of Theoret. Physics
Project Period (FY) 2012-06-28 – 2017-03-31
Keywords計算困難さの解析 / 計算困難さの相転移 / 解空間の構造 / 解の数え上げ問題
Outline of Final Research Achievements

We investigated computational problems studied in the statistical physics for developing a new approach in computational complexity theory. We examined a framework proposed in the statistical physics for understanding the computational hardness transition phenomena, and we discovered and mathematically proved a new type of hardness transition, which lead us to propose a new and robust framework for investigating the computational hardness transitions. This framework can be used as a new basis of discussing the security of cryptographic primitives. We also studied the structure of solutions and the number of solutions of various computational problems that have been discussed in the statistical physics, and found several fundamental properties for developing efficient algorithms for solving these problems.

Free Research Field

計算の理論

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi