• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Molecular theories for self-assembly and order formation

Planned Research

  • PDF
Project AreaDynamical ordering of biomolecular systems for creation of integrated functions
Project/Area Number 25102002
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionKyoto University

Principal Investigator

SATO Hirofumi  京都大学, 工学研究科, 教授 (70290905)

Co-Investigator(Kenkyū-buntansha) 山本 武志  京都大学, 理学研究科, 助教 (30397583)
Project Period (FY) 2013-06-28 – 2018-03-31
Keywords自己集合 / マスター方程式 / 液体の積分方程式理論 / 粗視化モデル / エネルギーランドスケープ / 量子化学
Outline of Final Research Achievements

Self-assembly is a process in which a certain number of molecules assemble to spontaneously form an ordered structure. In this project, we aimed to clarify the mechanism and dynamics of the process. As a result, (1) we have developed fundamental methods to understand self-assembly process in mind. (2) Nanocube is a self-assembling system, in which six gear-like amphiphilic molecules form an ordered cubic structure. We have studied the system using all-atom model and coarse-grained model to understand the assembling mechanism. (3) The time evolution was analyzed for the formation process of octahedron-shaped coordination capsule consisting of Pd (II) ions and eight panel-shaped ligands, by utilizing master equation. Detail of the formation process including the rate-determining step was investigated using quantum chemical effective Hamiltonian. Moreover, based on these, (4) The dynamics and molecular characteristics of various self-assembly processes were clarified.

Free Research Field

理論化学

Academic Significance and Societal Importance of the Research Achievements

自己集合過程のメカニズムとダイナミクスの理解は、多くの自然現象にも通底する普遍性の高い課題である。しかし実験的にも未解明であり、既存の理論化学の方法でも十分答えることができなかった。本課題では溶液中での自己集合過程の分子シミュレーションを世界で初めて成功させて、原子レベルで溶媒分子の役割を明らかにした。また対象を粗視化することで幅広い時間・空間スケールにおける分子や分子集団の挙動を特徴付け、実際の観測結果と結びつけながら現象を俯瞰するためのフレームワークを構築した。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi