• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Deepening and applications of sparse modeling by approaches of semiparametric Bayesian inference

Planned Research

  • PDF
Project AreaInitiative for High-Dimensional Data-Driven Science through Deepening of Sparse Modeling
Project/Area Number 25120012
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Complex systems
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

Fukumizu Kenji  統計数理研究所, 数理・推論研究系, 教授 (60311362)

Co-Investigator(Kenkyū-buntansha) 鈴木 大慈  東京大学, 大学院情報理工学系研究科, 准教授 (60551372)
西山 悠  電気通信大学, 大学院情報理工学研究科, 助教 (60586395)
冨岡 亮太  東京大学, 情報理工学(系)研究科, 助教 (70518282)
Co-Investigator(Renkei-kenkyūsha) NISHIYAMA Yu  電気通信大学, 大学院情報理工学研究科, 助教 (60586395)
LIU Song  統計数理研究所, 統計的機械学習研究センター, 特任助教 (80760579)
Project Period (FY) 2013-06-28 – 2018-03-31
Keywordsスパースモデリング / セミパラメトリック / ベイズ推論 / 最適化 / アルゴリズム
Outline of Final Research Achievements

Filtering problems aims at estimating the current unobserved state variable from the unknown dynamics of the unobserved state variables and indirect observations. We consider filtering under the assumption that the observation model is uncertain and not able to be modeled easily, and proposed effective algorithms in such difficult situations. We confirmed the advantage of the proposed algorithms over existing relevant methods. We also studied fast methods for complex sparse modeling, and proposed an optimization methods that achieves the best convergence rate theoretically.

Free Research Field

機械学習,数理統計

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi