• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

First-principles Theoretical Elucidation and Design of Active Sites in Functional Materials

Planned Research

  • PDF
Project Area3D Active-Site Science
Project/Area Number 26105010
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionOsaka University

Principal Investigator

Morikawa Yoshitada  大阪大学, 工学研究科, 教授 (80358184)

Co-Investigator(Kenkyū-buntansha) 赤木 和人  東北大学, 材料科学高等研究所, 准教授 (50313119)
Research Collaborator INAGAKI Kouji  
ONO Tomoya  
KIZAKI Hidetoshi  
HAMAMOTO Yuji  
MIYAZAKI Tsuyoshi  
Project Period (FY) 2014-07-10 – 2019-03-31
KeywordsDFT / 表面科学 / 半導体 / ドーパント / 金属 / 触媒 / 酸化物
Outline of Final Research Achievements

In this research project, we have developed first-principles electronic structure calculation program code that can accurately and efficiently calculate local structures of materials at the atomic level, and by using it, we have clarified the relation between local atomic geometries in materials and physical and chemical properties of those materials. Local atomic geometries of materials and the relation to their functions are quite often difficult to elucidate experimentally, and therefore, roles played by our first-principles simulations are very important in this field.
Specifically, we have succeeded in clarifying the atomic structures and electronic and chemical properties of highly doped As in Si semiconductor devices, Pt single-atom catalysts supported on graphene nanoribbon in fuel cell electrodes, Mn doped in ZnSnAs2 for diluted magnetic semiconductors, Rh doped SrTiO3 for photocatalysts, X-ray induced damage in BEDT-TTF organic materials.

Free Research Field

量子シミュレーション

Academic Significance and Societal Importance of the Research Achievements

本研究による成果で、物質の原子レベルでの局所構造を精度よく、且つ、効率的に求めることができる第一原理電子状態計算プログラムを開発・整備するとともに、それを用いる事により、これまで未解明であった触媒や半導体、有機材料中での局所構造とその物質の持つ物性や化学的反応性の関連が明らかになり、これらの機能を発現する要因が明らかになり、燃料電池電極触媒やSi半導体、希薄磁性半導体、光触媒、メタノール合成触媒などでより望ましい性質を持つ物質をデザインする際の指針を与えることができた。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi