• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Control of 3D atomic structures of impurities doped in semiconductors and its application to low-loss high efficient devices

Planned Research

  • PDF
Project Area3D Active-Site Science
Project/Area Number 26105014
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionTokyo Institute of Technology

Principal Investigator

Tsutsui Kazuo  東京工業大学, 科学技術創成研究院, 教授 (60188589)

Co-Investigator(Kenkyū-buntansha) 武田 さくら  奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (30314537)
若林 整  東京工業大学, 工学院, 教授 (80700153)
角嶋 邦之  東京工業大学, 工学院, 准教授 (50401568)
Research Collaborator Sato Shintaro  
Mori Daisuke  
Hoshii Takuya  
Iwai Hiroshi  
Kawamura Tomoaki  
Project Period (FY) 2014-07-10 – 2019-03-31
Keywords半導体 / 不純物ドーピング / 界面制御 / 光電子ホログラフィー
Outline of Final Research Achievements

Controls of impurity doping, electronic states of interfaces and surfaces are always significant problems for development of high performance semiconductor devices. Observation of atomic scale structures of particular sites governing their electrical properties is significant. In this project, photoelectron holography was employed as a main analytical method, and it was applied to silicon (Si), wide band gap semiconductors and layered material semiconductors. 3D structures of arsenic (As) doped in Si, electrically active subsitutional As atoms and electrically inactive clustered As atoms, and additive atoms incorporated at the interface of SiC and dielectric film were successfully evaluated. Particular electronic states of MoS2 films were also revealed.
Improvement of both sensitivity and energy resolution in the photoelectron holography technique realized analyses of impurity doped in semiconductors. New contributions to development of semiconductor technologies are expected.

Free Research Field

半導体工学

Academic Significance and Societal Importance of the Research Achievements

光電子ホログラフィー法の感度とエネルギー分解能の向上により、半導体デバイス技術に重要なドープされた不純物の構造解析に成功した。これは、分析技術として実証的に新しい領域を開拓したとともに、その結果として社会的に非常に重要な産業技術である半導体デバイスの製造技術の進化に貢献し得ることを示した。この点で、学術的意義と社会的意義はいずれも大きい。今や社会の基盤技術であるSi集積回路、省エネルギー社会を生み出す広バンドギャップ半導体による光デバイスやパワーデバイス、ヒューマンインターフェースの新境地が期待される層状半導体のそれぞれで材料技術の展開に新しい可能性を示唆する成果である。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi