2018 Fiscal Year Final Research Report
Control of 3D atomic structures of impurities doped in semiconductors and its application to low-loss high efficient devices
Project Area | 3D Active-Site Science |
Project/Area Number |
26105014
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Tsutsui Kazuo 東京工業大学, 科学技術創成研究院, 教授 (60188589)
|
Co-Investigator(Kenkyū-buntansha) |
武田 さくら 奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (30314537)
若林 整 東京工業大学, 工学院, 教授 (80700153)
角嶋 邦之 東京工業大学, 工学院, 准教授 (50401568)
|
Research Collaborator |
Sato Shintaro
Mori Daisuke
Hoshii Takuya
Iwai Hiroshi
Kawamura Tomoaki
|
Project Period (FY) |
2014-07-10 – 2019-03-31
|
Keywords | 半導体 / 不純物ドーピング / 界面制御 / 光電子ホログラフィー |
Outline of Final Research Achievements |
Controls of impurity doping, electronic states of interfaces and surfaces are always significant problems for development of high performance semiconductor devices. Observation of atomic scale structures of particular sites governing their electrical properties is significant. In this project, photoelectron holography was employed as a main analytical method, and it was applied to silicon (Si), wide band gap semiconductors and layered material semiconductors. 3D structures of arsenic (As) doped in Si, electrically active subsitutional As atoms and electrically inactive clustered As atoms, and additive atoms incorporated at the interface of SiC and dielectric film were successfully evaluated. Particular electronic states of MoS2 films were also revealed. Improvement of both sensitivity and energy resolution in the photoelectron holography technique realized analyses of impurity doped in semiconductors. New contributions to development of semiconductor technologies are expected.
|
Free Research Field |
半導体工学
|
Academic Significance and Societal Importance of the Research Achievements |
光電子ホログラフィー法の感度とエネルギー分解能の向上により、半導体デバイス技術に重要なドープされた不純物の構造解析に成功した。これは、分析技術として実証的に新しい領域を開拓したとともに、その結果として社会的に非常に重要な産業技術である半導体デバイスの製造技術の進化に貢献し得ることを示した。この点で、学術的意義と社会的意義はいずれも大きい。今や社会の基盤技術であるSi集積回路、省エネルギー社会を生み出す広バンドギャップ半導体による光デバイスやパワーデバイス、ヒューマンインターフェースの新境地が期待される層状半導体のそれぞれで材料技術の展開に新しい可能性を示唆する成果である。
|