• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1991 Fiscal Year Final Research Report Summary

Establishment of the screening methods for bone-resorbing factors using in vitro osteoclast formation system.

Research Project

Project/Area Number 01870078
Research Category

Grant-in-Aid for Developmental Scientific Research

Allocation TypeSingle-year Grants
Research Field Functional basic dentistry
Research InstitutionShowa University

Principal Investigator

SUDA Tatsuo  Showa Univ., School of Dentistry Professor, 歯学部, 教授 (90014034)

Co-Investigator(Kenkyū-buntansha) SASAKI Takahisa  Showa Univ., School of Dentistry Associate Professor, 歯学部, 助教授 (50129839)
YAMAGUCHI Akira  Showa Univ., School of Dentistry Associate Professor, 歯学部, 助教授 (00142430)
TAKAHASHI Naoyuki  Showa Univ., School of Dentistry Associate Professor, 歯学部, 助教授 (90119222)
Project Period (FY) 1989 – 1991
KeywordsOsteoclast / Bone resorbing factors / Osteoblast / Macrophage colony stimulating factor / M-CSF / 1alpha, 25(OH)_2D_3 / Bone resorption
Research Abstract

We have developed in vitro systems to examine the effects of osteotropic factors on the sequential process of osteoclastic bone resorption ; 1) proliferation of osteoclast progenitors, 2) differentiation of osteoclast precursors into multinucleated osteoclasts, and 3) pit formation by functionally active osteoclasts.
1. Evaluation of proliferation of osteoclast progenitors
We have developed a two-step culture system to determine the effect of osteotropic factors on proliferation of osteoclast progenitors. Bone marrow cells were first cultured in semisolid methylcellulose in the presence of various CSFs. Marrow cells were then isolated and further co-cultured with osteoblastic cells in the presence of 1alpha, 25(OH)_2D_3. After co-culture for 7 days, the number of osteoclasts formed were scored. On the basis of the number of marrow cells co-cultured with osteoblastic cells and that of osteoclasts formed, we were able to estimate the number of osteoclast progenitors present in marrow cell … More fractions. Using this method, we found that M-CSF was the most potent growth factor in inducing the growth of osteoclast progenitors.
2. Evaluation of differentiation of osteoclast precursors
We have reported that osteoclasts are formed in mouse marrow cultures and in co-cultures of mouse osteoblastic cells and spleen cells. Using these cultures, we have established a screening system for examining the effects of osteotropic factors on osteoclast differentiation. Bone-resorbing factors such as 1alpha, 25(OH)_2D_3, PTH, PGE_2 and IL-1 similarly stimulated differentiation of osteoclast precursors into functionally active osteoclasts.
3. Evaluation of bone-resorbing activity of osteoclasts
Osteoclasts formed on plastic dishes were hardly released from the dish surface. In contrast, when co-cultures were performed on collagen gel-coated dishes then treated with collagenase, most of the cells were easily released from the dishes. The osteoclast population was enriched by density gradient centrifugation. Using an osteoclast-enriched population and dentine slices, we have developed a simple bone resorption assay system. When isolated osteoclasts were cultured on dentine slices, they formed resorption pits within 24 hr. The area of resorption pits was quantitatively measured with an image analyzer. Using this system, we found that calcitonin and bafiromycin A_1 (an inhibitor of vacuolar H^+-ATPase) strongly inhibited pit formation by isolated osteoclasts.
These systems appear to be useful for examining the mechanism of action of osteotropic factors in osteoclastic bone resorption. Less

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] Takahashi,N.: "Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells." Endocrinology. 128. 1792-1796 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takahashi,N.: "Role of colony stimulating factors in osteoclast development." J.Bone Miner.Res.6. 977-985 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sasaki,T.: "Tetracycline administration restores osteoblast structure and function during experimental diabetes." Anat.Rec.231. 25-34 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yamaguchi,A.: "Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro." J.Cell Biol.113. 681-687 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Suda,T.: "Modulation of osteoclast differentiation." Endocrine.Rev.,. (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Suda,T.: "The role of vitamin D in boen resorption." J.Cell.Biochem.,. (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takahashi, N., et al.: "Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells." Endocrinology. 128. 1792-1796 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Sasaki, T., et al.: "Tetracycline administration restores osteoblast structure and function during experimental diabetes." Anat. Rec.231. 25-34 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yamaguchi, A., et al.: "Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro." J. Cell Biol.uuo. 681-687 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Suda, T., et al.: "The role of vitamin D in bone resorption." J. Cell. Biochem.(1992)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1993-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi