• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1991 Fiscal Year Final Research Report Summary

On the deformations of cyclic Galois coverings of algebraic curves

Research Project

Project/Area Number 02640075
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionChuo University

Principal Investigator

SEKIGUCHI Tsutomu  Chuo Univ., Dept. of Math., Professor, 理工学部, 教授 (70055234)

Co-Investigator(Kenkyū-buntansha) MATSUYAMA Yoshio  Chuo Univ., Dept. of Math., Professor, 理工学部, 教授 (70112753)
ISHII Hitoshi  Chuo Univ., Dept. of Math., Professor, 理工学部, 教授 (70102887)
IWANO Masahiro  Chuo Univ., Dept. of Math., Professor, 理工学部, 教授 (70087013)
KURIBAYASHI Akikazu  Chuo Univ., Dept. of Math., Professor, 理工学部, 教授 (40055033)
SEKINO Kaoru  Chuo Univ., Dept. of Math., Professor, 理工学部, 教授 (40054994)
Project Period (FY) 1990 – 1991
KeywordsWitt group / Artin-Schreier / Kummer / algebraic curve / extension / Group scheme
Research Abstract

Our final aim of this research is to lift a pair (C, sigma), of a complete nonsingular curve C and its automorphism sigma of order p^n over a field of characteristic p(0), to a pair over a field of characteristic zero. For this purpose, we must construct a theory of deformations of Witt groups to tori. The n-dimensional Witt group W_n is an extension of W_<n-1> by G_a, and it contains Z/p^n as the extension of Z/p^<n-1> by Z/p. The deformations we require should preserves thus ffitrations of Witt groups. In this research, we found out that to hnadle this kind of deformations we needed a kind of vanishing theorem df extension groups of group schemes over an Artin local rings. More-over, using this vanishing theorem, we showed that we could control the deformations of W_n as an extension of W_<n-1> by G_a, the surjectivity of a specialization map, and the existence of deformations of W_n to a torus keeping the filtrations and the constant subgroup scheme Z/p^n. Using tyhese theorems, we could precisely construct the deformations of Artin-SchreierWitt exact sequences to exact sequences of kummer type. These deformed exact sequences give exactly the unified theory of the Artin-Schreier-Witt theory and the Kummer theory. In fact, we can check the unified theory by computing the first cohomology group for these deformed Witt groups. Our theory is sufficiently general, but unfortunately we could not decide the defining rings of these deformations from this direction, and for this purpose we must develop another kind of method. In fact, looking the deformations of isogenies of group schemes more precisely, we can see that our deformation of W_n is defined over the ring Z_<(p)>[mu_p^n]. Moreover, these deformations should be given from the unit groups of group rings. From this view point, we could also give some partial results.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] "A case of extensions of group schemes over a discrete valuation ring" Tsukuba J.Math.14. 459-487 (1990)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] "Some cases of extensions of group schemes over a discrete valuation ring I" J.Fac.Sci.Univ.Tokyo,Sect.IA,Math.38. 1-45 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] "On the deformations of Witt groups to tori,II" J.Alg.138. 273-297 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] "Theori de Kummer-Artin-Schreier" C.R.Acad.Sci.Paris. 312. 417-420 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] "A note on extensions of algebraic and formal groups I" Math.Z.206. 567-575 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] "On the sculpture of the unit group of Z_<(p)>〔μ_<p^2>〕〔χ〕/(χ^<p^2>-1)" Preprint. 1-17 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Sekiguchi: ""A case of extensions of group schemes over a discrete valuation ring"" Tsukuba J. Math.14 No. 2. 459-487 (1990)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi: ""Some cases of extensions of group schemes over a discrete valuation ring I"" J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.38. 1-45 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi: ""On the deformations of Witt groups to tori, II"" J. Alg.138, No. 2. 273-297 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi: ""Theori de Kummer-Artin-Schreier"" C. R. Acad. Sci. Pris. t. 312, Serie I. 417-420 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi: ""A note on extensions of algebraic and formal groups I"" Math. Z.206. 567-575 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi: ""On the sculpture of the unit group of Z_<(p>[mu_p^2][x]/(x^p2^<>-1)"" Preprint. 1-17 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi: ""Theorie de Kummer-Artin-Schreier et applications"" Preprint. 1-8 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi: ""On the unramified Kummer-Artin-Schreier-Witt sequences"" R. I. M. S. technical reports. (1992)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1993-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi