• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1992 Fiscal Year Final Research Report Summary

Number theory of algebraic varieties

Research Project

Project/Area Number 03452003
Research Category

Grant-in-Aid for General Scientific Research (B)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionUniversity of Tokyo

Principal Investigator

KAWAMATA Yujiro  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 教授 (90126037)

Co-Investigator(Kenkyū-buntansha) KUROKAWA Nobushige  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 助教授 (70114866)
SUNADA Toshikazu  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 教授 (20022741)
NAKAMURA Hiroaki  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 助手 (60217883)
NAKAYAMA Noboru  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 助教授 (10189079)
SAITO Takeshi  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 助教授 (70201506)
Project Period (FY) 1991 – 1992
Keywordsalgebraic varieties / number theory / semistable reduction / minimal model / zeta function / log rithmic structure / Hecke character / Galois representation
Research Abstract

The purpose of this research was to investigate the number theory of algebraic varieties defined over a ring of algebraic integers. In order to start this investigation, it is important to replace the originalvariety by a more natural model by a birational transformation. If the given variety has relative dimension 1 over the ring of integers, then the classical minimal model theory provides us the canonical model. Kawamata tried to extend the minimal model theory to higher dimensional case, and succeeded in the case in which the relative dimension is 2 and the variety has semistable reduction.
In the course of the proof, newly developed theory of algebraic 3-folds over the complex numbers was used. The difficulty in the proof came from the fact that the vanishing theorem of Kodaira type, which was very useful in the case over the complex numbers, is false in positive characteristic.
The singular fiber of a variety with semistable reduction is a normal crossing variety. Conversely, Kawam … More ata considered the smoothing of normal crossing variety into a variety with semistable reduction, and developed the theory of logarithmic deformations with Yoshinori Namikawa at Sophia University. In particular, they proved the existence of a smoothing of a degenerate Calabi-Yau variety.
The cohomology theory is an important tool in the investigaition of algebraic varieties. Saito investigated the 1 dimensional Galois representations on the determinant of L-adic cohomology groups. In the case of constant coefficients, he obtained the description of the corresponding quadratic extensions. In the case of variable coefficients, he proved that they are described by the algebraic Hecke characters determined by the Jacobi sums.
The zeta functions an analytic object which is attached to an algebraic variety over the ring of integers. There are several mysterious conjectures connecting the zeta functions and the number theory of algebraic varieties. Kurokawa investigated multiple zeta funcitons and multiple trigonometric functions, and found formulas of the Gamma factor of the Selberg zeta functions and of the special values of the zeta functions. Less

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Y.Kawamata: "Abundance theorem for minimal threefolds" Invent.Math.108. 229-246 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawamata: "Termination of log-flips for algebraic 3-folds" Intl.J.Math.3. 653-659 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawamata: "Log canonical model of a log minimal model" Intl.J.Math.3. 351-357 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawamata: "Vnobstructed deformations-a remark on a paper of Z.Ran" J.Alg.Geom.1. 183-190 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawamata: "Rational curves and classification of algebraic varieties,en Essays on Mirror Manifolds,ed.S-T.Yau" International Press,Hong Kong. 160-167 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawamata: "On the length of an extremal rational curve" Invent.Math.105. 609-611 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawamata: "Abundance theorem for Minimal threefolds" Invent. Math.108. 229-246 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kawamata: "Termination of log-flips for algebraic 3-folds" Intl. J. Math.3. 653-659 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kawamata: "Log canonical model of a Log minimal model" Intl. J. Math.3. 351-357 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kawamata: "Unobstructed deformations - a remark on a paper of Z. Ran" J. Alg. Geom.1. 183-190 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kawamata: "Rational curves and classification of algebraic varieties, in Essays on Mirror Manifolds, ed. S-T. Yau" International Press, (Hong Kong). 160-167 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kawamata: "On the length of an external rational curve" Invent. Math.105. 609-611 (1991)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1994-03-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi