• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1993 Fiscal Year Final Research Report Summary

A Study for Utilizing the Linguistic Information in Phoneme Recognition to Understand Continuous Speech

Research Project

Project/Area Number 03452173
Research Category

Grant-in-Aid for General Scientific Research (B)

Allocation TypeSingle-year Grants
Research Field 情報工学
Research InstitutionChiba Institute of Technology

Principal Investigator

KIDO Ken'iti  Chiba Inst. of Tech., Engineering, Prof., 工学部, 教授 (30006209)

Co-Investigator(Kenkyū-buntansha) MAKINO Shozo  Tokyo Univ., Research Center for Applied Information Sciences, Associate Prof., 応用情報学研究センタ, 助教授 (00089806)
ARAI Shuichi  Chiba Inst. of Tech., Engineering, Associate Prof., 工学部, 講師 (20212590)
UKIGAI Masahiro  Chiba Inst. of Tech., Engineering, Associate Prof., 工学部, 助教授 (80118695)
SUGAWARA Kenji  Chiba Inst. of Tech., Engineering, Prof., 工学部, 教授 (00137853)
MIIDA Yoshiro  Chiba Inst. of Tech., Engineering, Prof., 工学部, 教授 (10083859)
Project Period (FY) 1991 – 1993
KeywordsContinuous Speech Recognition / Speech Recognition / Phoneme Recognition / Speaker Independent / Linguistic Information
Research Abstract

In this study, we proposed 2 higher performance phoneme recognition methodsand the continuous speech recognition method utilizing the linguistic information around the target phoneme.
At first, we proposed MR-HMM (Multi-Resolution HMM) based on Wavelet transform, which is able to control the time-frequency resolution. The WTD (Wavelet transform Tree Data) is proposed to represent the time-frequency space in scalogram that is obtained through Wavelet transform. Using this WTD structure, we proposed the State merge Algorithm stucying MR-HMM, it enables the high recognition rate.
Next, we proposed the phoneme recognition method using the 9 acoustic features besides the cepstrum parameters that is most popular but not enough. In general, it is necessary for using the several kinds of acoustic parameters to analyze what parameters are suitable for the specified phoneme recognition. But, the proposed method enables using the several kinds of parameters except that. We proposed the Membership Scale to enable applying the linear discriminant method that is for 2 category discrimination to the multi category discrimination. Using this method, the linguistic recognition stage can get the reliability of the results from the acoustical recognition stage.
Finally, we proposed the new linguistic recognition method, that uses the co-occurative relationship of the words in one sentence. This method doesn't use the grammatical knowledge, so the task fre speech is available. Combining this linguistic recognition method with the acoustic recognition methods mentioned above, the misrecognition in the acoustical recognition stage can be controlled by the linguistic rrecognition stage. From the experimental results, we confirmed the effectiveness of the proposed recognition methods.

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] 柵橋健二: "異常発声音の評価を目的とした音声分析表示法の予備的検討" 電子情報通信学会技術研究会資料. EA93-33. 17-23 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大内康裕: "正常および異常音声の第1・第2フォルマント平面における比較" 日本音響学会秋季研究発表会講演論文集. 593-594 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 柵橋健二: "正常および異常音声のフォルマント周波数の時間遷移パターンによる比較" 日本音響学会秋季研究発表会講演論文集. 595-596 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shozo Makino: "Speech to Text Conversion System Based on Phoneme Recognition" Annals of Applied Information Science. 18. 51-65 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 栗原世治: "各種音響パラメータが保持する個人性情報の分析" 日本音響学会秋季研究発表会講演論文集. 645-646 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林淳: "動詞、名詞のスポッティングによる会話文の認識" 日本音響学会秋季研究発表会講演論文集. 175-176 (1993)

    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 1995-03-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi