• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1992 Fiscal Year Final Research Report Summary

Fundamental Study on Non-stationary Detection Method of Long Biological Time Series Using Topological Mappings

Research Project

Project/Area Number 03452183
Research Category

Grant-in-Aid for General Scientific Research (B)

Allocation TypeSingle-year Grants
Research Field 計測・制御工学
Research InstitutionUniversity of Tokyo

Principal Investigator

SAITO Masao  University of Tokyo,Faculty of Medicine,Professor., 医学部(医), 教授 (60010708)

Co-Investigator(Kenkyū-buntansha) IKEDA Kenji  University of Tokyo,Faculty of Medicine,Assistant., 医学部(医), 助手 (70010030)
WATANABE Akira  University of Tokyo,Faculty of Medicine,Associate Professor., 医学部(医), 助教授 (00009937)
Project Period (FY) 1991 – 1992
KeywordsNeural Networks / Adaptive Signal Processing / Multi-dimensional Signal / Vector Quantization / Non-stationary Signal / Biological Signal
Research Abstract

We made fundamental consideration on the method of utilizing topological mappings(TM),explored by T.Kohonen,in order to detect non-stationary in long biological time series. We obtained results below.
1.We analyzed properties of TM theoretically by treating TM as a kind of adaptive vector quantization algorithm. We derived quantitatively the relationship between the reference vector distribution and the probability distribution of input signal,by constructing Lyapunov function for TM.
2.Property of TM,called as automatic selection of characteristic dimension,can be used to extract intrinsic structure of input. Placement of reference vectors generated by TM is little affected by choice of coordinate system in input space,and this property of TM is plausible for the application of TM to signal analysis.
3.We proposed the method of detecting non-stationary in long biological time series,which makes use of the placement of reference vectors generated by TM and continuated mappings constructed by it.
4.The proposed method was applied,as an example,to the analysis of sleep EEG. It was confirmed that obtained results was in good agreement with knowledge in clinical fields.
5.As the amount of calculation is so large that it may cause problem in applying this method,we made an idea for reducing the amount of calculation. This idea can actually reduce the amount of calculation to large extent.
On the basis of results above,we plan to develop methods in which we utilize metric information in continuated mappings,and to apply this method to various cases and to gather larger amount of data, in order to make closer comparison with clinical knowledge and to improve reliability of the detection.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 田中 利幸: "適応的ベクトル量子化法としてのKohonenのモデルの定量的性質" 電子情報通信学会論文誌D-II分冊. 75. 1085-1092 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 田中 利幸: "Kohonenのモデルにおける学習の収要性について" 電子情報通信学会技術研究報告. NC91. 169-176 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 片山 貴文: "睡眠脳波の非定常信号の検出" 医用電子と生体工学特別号第31回日本エム・イー学会論文集. 30. 360 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 片山 貴文: "睡眠脳波処理" 電子情報通信学会技術研究報告. MBF92. 83-87 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Tanaka and M.Saito: "Quantitative properties of Kohonen's self-organizing maps as adaptive vector quantizers" Trans.IEICE. vol.J75-D-II,no.6. 1085-1092 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Tanaka and M.Saito: "On the convergence property of Kohonen's self-organizing maps" IEICE Tech.Rep.NC 91-154. 169-176 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Katayama,E.Suzuki and M.Saito: "Detection of non-stationary in sleep EEG" Proc.31st Conf.Japan Soc.ME&BE. 1-J-16. 360 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Katayama,E.Suzuki and M.Saito: "Analysis of sleep EEG by a multilayer feature map" IEICE Tech.Rep.MBE 92-50. 83-87 (1992)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1994-03-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi