• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1992 Fiscal Year Final Research Report Summary

Applications of Fast Differentiation to Numerical Solution of Ordinary Differential Equations, Numerical Integration and Optimization.

Research Project

Project/Area Number 03640197
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionChiba University

Principal Investigator

ONO Harumi  Chiba University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (70194595)

Co-Investigator(Kenkyū-buntansha) HASHIMOTO Akihiro  Chiba University, Information Processing Center, Lecturer, 総合情報処理センタ, 講師 (60164779)
HOSHI Mamoru  University of Electro-Communications, Graduate School of Information Systems, Pr, 大学院, 教授 (80125955)
Project Period (FY) 1991 – 1992
KeywordsAutomatic differentiation / Romberg integration / Numerical integration / Numerical analysis / Runge-Kutta methods / Approximation for functions / Interval analysis / Ray tracing
Research Abstract

(1) Application of Automatic Differentiation to Numerical Solution of Ordinary Differential Equations. Explicit Runge-Kutta methods using the second derivatives of function are considered. It is shown that there exist only two stage fourth-order method in which the third-order method is embedded. Furthermore, we presented the fifth-and sixth-order methods which are the most promising methods with respect to the local truncation error. The application to Euler-Trapezoidal rule is also considered, namely, Rosenbrock method using one iteration of Newton method in the computation of the corrector. We are now comparing the ordinary Rosenbrock method with that using automatic differentiation.
(2) Application of Automatic Differentiation to Numerical Integration. We also considered the new variants of the Romberg integration which is efficient for the functions having no singularities. They use the derivatives only at both end points. It is shown that among these variants the method using the first derivatives is one of the most promising with respect to the amount of computational work, because it achieves the same accuracy as the standard Romberg integration with half stepsize.
(3) Application of Automatic Differentiation to Ray Tracing. Automatic differentiation can be used to solve a wide variety of problems in computer graphics. We presented an algorithm for ray tracing implicit surfaces using automatic differentiation method. and investigated the usefulness of such methods for other problems.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] 小野 令美: "An addendum to the Previous Paper“Runge-Kutta Type Seventh-order Limiting Formula(1989)"" Journal of Infornation Processing. 14. 204-207 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 戸田 英雄: "Romberg積分における端点補正の効用について考察" 日本応用数理学会論文誌. 1. 333-344 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 戸田 英雄: "ある超越方程式の解の近似" 京都大学数理解析研究所講究録. (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小野 令美: "微分係数を利用する常微分方程式数値解法公式について-自動微分法の応用-" 京都大学数理解析研究所講究録. (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小野 令美: "Explicit Runge-Kutta Methods Using the Secoud Deriuatiues" Annals of Numerical Mathematies. 1. (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ono, H. and Toda, H.: "An Addendum to the Previous Paper "Runge-Kutta Type Seventh-order Limiting Formula(1989)"." Journal of Information Processing. 14. 204-207 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toda, H., Ono, H. and Iri, M.: "Use of Derivatives at Endpoints in Romberg Integration." Transactions of the Japan Society for Industrial and Applied Mathematics. 1. 333-344 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toda, H. and Ono, H.: "On the Approximation of the Solution of an Transcendental Function(in Japanese)." Kokyuroku,Research Institute for Mathematical Sciences Kyoto University. (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ono, H.: "Numerical Methods for Ordinary Differential Equations Using Partial Derivatives(in Japanese)." Kokyuroku, Research Institute for Mathematical Sciences Kyoto University. (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ono, H.: "Explicit Runge-Kutta methods Using the Second Derivatives." Annals of Numerical Mathematics, 1,J.C. Baltzer AG. (1994)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1994-03-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi