1992 Fiscal Year Final Research Report Summary
A Study of the System Theory via Controlled Path Integral
Project/Area Number |
03805020
|
Research Category |
Grant-in-Aid for General Scientific Research (C)
|
Allocation Type | Single-year Grants |
Research Field |
機械力学・制御工学
|
Research Institution | HOKKAIDO UNIVERSITY |
Principal Investigator |
SHIMA Masasuke Hokkaido University, Fac. of Eng., Professor, 工学部, 教授 (10029457)
|
Co-Investigator(Kenkyū-buntansha) |
YAMASHITA Yuu Hokkaido University, Fac. of Eng., Assistant Professor, 工学部, 助手 (90210426)
ISURUGI Yoshihisa Hokkaido University, Fac. of Eng., Associate Professor, 工学部, 助教授 (00109480)
|
Project Period (FY) |
1991 – 1992
|
Keywords | controlled path integral / finite term expression / functional series expansion / time-varying system / output invariance / output controllability / Hamiltonian control system / non-dissipative control |
Research Abstract |
In this research project, we studied the possibility of system theory based on the controlled path integrals. The dynamical behavior of the system is described by a vector field X=X_0+X_1u^1+...+X_mu^m defined on a manifold M as a state space. u=(u^1,...,u^m) are control inputs to the system. The control u(t) given on [t_0,t_1] deter mines the state trajectory p(t). Assuming that a differential form omega is given and integrating omega(X) along the trajectory, we obtain the controlled path integral associated with omega and X. Outputs of a system, Lyapunov function and the performance index of the optimal control can be expressed by the controlled path integrals.Therefore, the control theory can be regarded as the study of the characteristics of controlled path integrals. Integration by parts yields finite term expressions of path integrals along the trajectory, which are useful in deriving the design methods along the trajectory such as the decoupling feedback control, the structure al
… More
gorithm and so on. Functional series expansion formulas of the Fliess type and the Volterra type are obtained by these expressions under the assumption of analyticity. The results was extended to the time-varying systems. A necessary and sufficient condition of the output controllability of the path integral is derived and expressed by the Lie derivatives of omega along the vector fields of the strong accessibility. If omega=dh,the condition accords with the previous results. It is also observed that the condition of the output invariance is derived more easily if we use the equality of the generalized Legendre-Clebsch condition, which is equivalent with the condition that a certain differential form is exact. This fact suggests the close relation of these notions. Using the controlled path integrals to express the system is nearly equivalent to describing the system with the cotangent bundle and the Hamiltonian system, where the symplectic structure and the Hamiltonian vector fields are useful in the study of stability. The notion of Hamiltonian control system is studied in detail and its equivalence and normal form are studied. We studied the control problem of the Berry phase, which is not integrable on the fiber space. The notion of the non-dissipative control is presented and its solvability condition is given for the cascade system. The approximate design methods of the nonlinear output regulation problem and the nonlinear almost model following problem are studied and partly solved. Less
|
Research Products
(4 results)