2003 Fiscal Year Annual Research Report
Project/Area Number |
03F00152
|
Research Institution | Tohoku University |
Principal Investigator |
柳田 英二 東北大学, 大学院・理学研究科, 教授
|
Co-Investigator(Kenkyū-buntansha) |
KOZLOVA Irina 東北大学, 大学院・理学研究科, 外国人特別研究員
|
Keywords | 非線形 / 拡散 / シミュレーション / パターン / 数値計算 / 競争系 / モデリング / 偏微分方程式 |
Research Abstract |
自然界にあらわれる各種の時間的空間的パターンの自発的生成は反応拡散系としてモデル化される.本研究では,数理生態学に現れる反応拡散系や,時空間パターン生成のモデルとなる各種の反応拡散系に対し,数値的研究と解析的研究を組み合わせたアプローチによって,興味深い現象の背後に隠れた数理構造を明らかにすることを目的とする. 反応拡散系の研究においては,偏微分方程式の理論に基づいた解析と,数値シミュレーションによる現象の理解の両方が必要であり,その相互作用によって研究が進展する.解析的アプローチでは困難な各種の興味深い現象のメカニズムを理解するためには,計算機シミュレーションによる数値的研究が欠かせない.そこで今年度は特に,数値的研究によって,各種の反応拡散系のダイナミクスに関する基礎データを収集することに主眼をおいた.具体的には,生態学の数理モデルである競争型ロトカ・ボルテラ方程式に対し,2次元領域における局在化したパターンの存在に関して調べた.これは数学的には球対称で有界な解に対応するが,1次元の場合に比べてその解析は格段に難しくなる.そこで,数値計算によって解の構造を調べることによって理論的な解析の方向を探った.その結果,解の構造が依存するパラメータを抽出することに成功した.解の全体構造の解明は十分ではないが,理論的な研究も技術的な問題を明確にした. また,競争系のダイナミクスに関する定性的な研究と並行して,実際のフィールドデータに基づくパラメータ推定を行い,ある種の数理モデルについてその妥当性を検証した.
|
-
[Publications] M.Kuwamura, E.Yanagida: "The Eckhaus and zigzag instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 185-195 (2003)
-
[Publications] R.Ikota, E.Yanagida: "A stability criterion for stationary curves to the curvature-driven motion with a triple junction"Differential and Integral Equations. 16. 707-726 (2003)
-
[Publications] H.Yagisita, E.Yanagida: "A remark on stable subharmonic solutions time-periodic reaction-diffusion equations"Journal of Mathematical Analysis and Applications. 286. 795-803 (2003)
-
[Publications] P.Polacik, E.Yanagida: "On bounded and unbounded global solutions of a supercritical semilinear heat equation"Mathematisch Annalen. 327. 745-771 (2003)
-
[Publications] E.Yanagida, S.Yotsutani: "Recent topics on nonlinear partial differential equations"AMS Translations Ser.2. 211. 121-137 (2003)