• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1993 Fiscal Year Final Research Report Summary

PREDICTION FOR HEAVY RAINFALL USING NEURAL NETWORKS

Research Project

Project/Area Number 04805049
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field Hydraulic engineering
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

MORIYAMA Toshiyuki  KYUSHU UNIV.DETP.OF ENG.RESEARCH ASSOCIATE, 工学部, 助手 (50136537)

Co-Investigator(Kenkyū-buntansha) TANIGUCHI Rinichiro  KYUSHU UNIV.INTERDISCIPLINARY GRADUATE SCHOOL OF ENG.SCIENCE ASSOCIATE PROFFESOR, 総合理工学研究科, 助教授 (20136550)
HITANO Muneo  KYUSHU UNIV.DETP.OF ENG.PROFFESOR, 工学部, 教授 (50037850)
Project Period (FY) 1992 – 1993
KeywordsHeavy rainfall disaster / Debris flow / Sediment disaster / Rrainfall prediction / Neural networks / 降水レーダ
Research Abstract

The goal herein is to establish a prediction method for a degree of risk by certain rainfalls , as a countermeasure against sediment disaster which caused by rain. Thus, the time of concentration and critical rainfall are defined, A prediction system using neural network is constructed. It is expected that the neural network can learn a general rule from examples.
The main procedure of the method are as follows ; cumulative rainfalls on various times are calculated from a rainfall time series. The rainfalls pattern which is normalized and teach signal of occurrence 0.99 or non-occurrence 0.01 of disaster are given to the system. After the neural network is optimized by back-propagation learning, the system automatically calculates the degree of risk from 0 to 1 for new rainfalls pattern.
The prediction system is applied to three types of real cases and the results are as follows ; It is applicable for predicting the occurrence of debris flows at Unzen volcano, because the system has high accuracy in judgment. On secondary disaster after typhoon No.9119 at the Chikugo river basin, change in critical rainfall after the typhoon is recognized. Moreover the time of concentration and critical rainfall are found. It is clarified that the antecedent rainfall affects the occurrence of sediment disasters in Kagoshima city.
This system is good tool for prediction of sediment disaster and to estimate the occurrence criteria. Therefore, the prediction system using the neural network for the prediction of the rainfall rate seems to be developing more in the future.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] 森山聡之・平野宗夫・古堀謙次: "ニューラルネットワークによる降雨域の認識について" 水文・水資源学会研究発表要旨集. 50-52 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 川原恵一郎・平野宗夫・原田民司郎: "台風9119号の山林被害による土砂災害発生限界雨量の変化" 土木学会年次学術講演会講演概要集. 48-2. 38-39 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 三奈木孝・平野宗夫・森山聡之: "レーダ雨量情報を用いた短期間降雨予測について(第7報)" 平成5年度 土木学会西部支部学術講演会概要集. 430-431 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 古堀謙次・森山聡之・平野宗夫: "レーダ画像を用いた降雨域の認識について" 平成5年度 土木学会西部支部学術講演会概要集. 432-433 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 本脇宏・平野宗夫・森山聡之・川原恵一郎: "土石流発生限界雨量の解析手法について" 平成5年度 土木学会西部支部学術講演会概要集. 336-337 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Moriyama, M.Hirano.K.Kobori: "'Nyu-raru nettowa-ku niyoru kouuikino ninnsikini tuite'" Proc.of 1993 Annual Coference, JSHW. pp50-52 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kawahara, M.Hirano, T.Harada: "'Taifu9119gou no sannrinnhigai ni yoru dishasaigaihassei gennkaiuryou no hennka'" Proc of the 48th annual conference of JSCE. 48-2. pp38-39 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.MInaki, M.Hirano, T.Moriyama: "'Re-da uryou wo mochiita tannjikann kouuyosoku ni tuite (dai2hou)'" Proc.of Seibu-sibu conference of JSCE. PP430-431 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kobori, T.Moriyama, M.Hirano: "'Re-da gazou wo mochiita kouuiki no ninshiki ni tuite'" Proc.of Seibu-sibu conference of JSCE. PP432-433 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Motowaki, M.Hirano, T.Moriyama, K.Kawahara: "'Doseki ryuu hassei genkaiuryou no kaiseki shuhou ni tuite'" Proc.of Seibu-sibu conference of JSCE. 434-435 (1994)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1995-03-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi