1993 Fiscal Year Annual Research Report
Project/Area Number |
05233109
|
Research Institution | Hosei University |
Principal Investigator |
片岡 洋右 法政大学, 工学部, 助教授 (30025407)
|
Co-Investigator(Kenkyū-buntansha) |
尾崎 芳昭 名古屋工業大学, 工学部, 助教授 (60160850)
|
Keywords | 固体C60 / 相転移の理論 / 分子間相互作用 |
Research Abstract |
固体C60における回転相転移を統計力学的に調べるためにまず固体におけるc60分子間の相互作用を扱いやすい形に整理しなおすことから着手した。C60の2分子間の相互作用エネルギーについてはAllingerによるMM2ポテンシャルのうち炭素原子間のファンデルワールスポテンシャルの原子対の和で表すこととした。回転の自由度に関する相転移を調べるの、ポテンシャル関数を角運動の量子数Lで分類される自由回転の波動関数で表すと見通しが良くなる。そこでこのタイプの展開をまず行うこととした。C60分子自体が高い対称性を持つので、この分子内対称性を考慮して相互作用を正20面体群の基底である対称関数で展開する。このときはL=0、6、10、12の項が現れる。一方、固体C60において重力は面心立方格子を作る。このため空間部分は立体対称群を基底に使うと後の解析が容易になる。 2分子間の相互作用の展開では、2個の分子の角度の自由度を含む個数で分類する。角度の自由度を含まない等方的部分をまず計算した。これから得られた面心立方格子のサイズとポテンシャルエネルギーの深さは、実験値と比較して合理的なものであった。 つぎに一方の自由度のみを含むものについてはL=6より10の項方が大きいことが分かった。ただし面心立方格子をつくると結晶場になる。結晶場についてはL=6の方が充分大きい。 2体ポテンシャルの部分はL1とL2が6、10、12の組み合わせで多数の項からなる。これら全体を眺めるとL1=L2=10の各項が最も大きいことが分かった。得られた2体部分の大きさの程度は回転相転移温度を見積もるのにふさわしい大きさになっている。そこでこの相互作用の形を使って分子場近似を使って回転相転移を調べている。
|