• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1994 Fiscal Year Final Research Report Summary

Coherent Structures and Higher Dimensional Solitons in Planetary Fluids

Research Project

Project/Area Number 05836016
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 非線形科学
Research InstitutionGrant-in-Aid for Scientific Research (C)

Principal Investigator

KAWAHARA Takuji  Kyoto University, Engineering, Professor, 工学部, 教授 (60027373)

Co-Investigator(Kenkyū-buntansha) TOH Sadayoshi  Kyoto University, Assistant, 理学部, 助手 (10217458)
Project Period (FY) 1993 – 1994
Keywordsplanetary fluid / coherent structure / higher dimensional soliton / solitary wave solution / Rossby wave equation
Research Abstract

Several nonlinear long wave equations which admit two-dimensional solitary vortex or solitary wave solutions are taken up to investigate the possibility of higher dimensional soliton and the breakdown of complete integrability of soliton equations due to high-dimensionalization.Considered problems are numerical simulations of interactions of two-dimensionally localized structures (localized solitons) , theoretical atability analysis of dipolar vortex (modon) solutions to the nonlinear Rossby wave equation, and the effects of instability and dissipation on the nonlinear dispersive long wave equations.Obtained main results are as follows.
1.Stabilities of monopolar and dipolar vortex solutions of the Petviashvili equation are investigated numerically in relation to the vector and scalar nonlinear terms.Only monopolar vortex solution is found to satisfy the Petviashvili equation.
2.Interactions of modons to the nonlinear Rossby wave equation and evolutions of slanted modons are investigated both numerically and theoretically.It is shown analytically by means of the muiltipole expansion method that the slanted modons become always structurally unstable.
3.The possibility of two-dimensionally localized solitons is investigated based on the two-dimensional nonlinear long wave equations such as the Zakharov-Kuznetsov or the regularized-long-wave equation. The non-conservative effects of instability and dissipation on such non-linear dispersive equations are considered. It is shown that the governing approximate equations derived by the multiple scale perturbation are ubiquitous equations for a variety of wave phenomena not only in planetary fluid but also in liquid film flow, in multi-phase flow, in magma motion etc.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] 荒木圭典: "モードン解の構造安定性" 京都大学数理解析研究所講究録. 830. 262-271 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sho Hosoda: "Numerical solutions and pole expansion for perturbed Korteweg-de Vries equation" J. Phys. Soc. Japan. 63. 111-120 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yukinaka Uchiyama: "A Possible mechanism for frequency down-shift in nonlinear wave modulation" Wave Motion. 20. 99-110 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Keisuke Araki: "Stability of modon structure-Multipole expansion analysis" Applicable Analysis. (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takuji Kawahara: "Chaotic behavior of waves in two-phase system" Proc. IUTAM Symp. on Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems. (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takeshi Ooshida: "Steady pulse solutions to an RLW equation with instability and dissipation" 京都大学数理解析研究所講究録. (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 川原.琢治: "ソリトンからカオスへ-非線形発展方程式の世界-" 朝倉書店, 224頁 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kawahara: "Structural stability of modon solution" RIMS Report. 830. 262-271 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Hosoda: "Numerical solutions and pole expansion for perturbed Korteweg-de Vries equation" J.Phys.Soc.Japan. 63. 111-120 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawahara: "A possible mechanism for frequency down-shift in nonlinear wave modulation" Wave Motion. 20. 99-110 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawahara: "Stability of modon structure - Multipole expansion analysis" Applicable Analysis. (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawahara: "Chaotic behavior of waves in two-phase system Proc.IUTAM Symp.on Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems" Kluwer Academic. (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawahara: "Steady pulse solution to an RLW equation with instability and dissipation" RIMS Report. (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawahara: Asakura Shoten. From Soliton to Chaos - The World of Nonlinear Evolution Equations, 224 (1993)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1996-04-15  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi