• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Research on automorphic representations

Research Project

Project/Area Number 06402001
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

YOSHIDA Hiroyuki  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40108973)

Co-Investigator(Kenkyū-buntansha) UMEDA Toru  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (00176728)
HIRAI Takeshi  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70025310)
HIRAGA Kaoru  Kyoto Univ., Graduate School of Science, Instructor, 大学院・理学研究科, 助手 (10260605)
IKEDA Tamotsu  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (20211716)
HIJIKATA Hiroaki  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00025298)
Project Period (FY) 1994 – 1996
KeywordsL-function / Lie group / period of an abelian variety
Research Abstract

H.Yoshida studied periods of Hilbert modular forms and proved Shimura's conjectures on P,Q-invariants. He also studied the derivatives of Artin's L-functions at s=0 and found a relation with periods of abelian varieties with complex multiplication. This relation can be sharpened by the notion of "absolute CM-periods".
T.Ikeda studied residues of Eisenstein series and proved a Siegel-Weil type formula when Eisenstein series does not converge.
K.Hiraga studied the multiplicity of a discrete series representation with which it occurs in L^2 (GAMMA/G), where G is a semisimple Lie group and GAMMA is a discrete subgroup.
T.Umeda studied the notion of dual reductive pair in the case of quatum groups ; he generalized Capelli type identities for this case.
H.Hijikata conjectured an approximation theorem for semisimple algebras over the quotient field of a Dedekind domain ; related with this conjecture, he obtained many results on orders and lattices.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] H. Yoshida: "On a conjecture of Shimura concrning periods of Hilbcrt modular farms" Amer, J. Math.117. 1019-1038 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Yoshida: "On calculations of zeros of various L-functions" J. Math. Kyoto University. 35. 663-696 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Hijikata: "On the decomposition of latlius over orders" J. Math. Soc, Japan. 49. (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Ikeda: "On the residue of Eiscnstein series and the Siegl-Weil formula" Comp. Math.103. 183-218 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Hiraga: "On the multiplicities of the discrete series of semisimple Lie groups" Dukc Math. J.85. 167-181 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Umeda (with Noumi, Wakayama): "Dual pairs, spberical barmonicas, and a Capolliidentity in quantum group" Comp. Math.104. 227-277 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Yoshida: "On a conjecture of Shimura concerning periods of Hilbert modular forms" Amer.J.Math.117. 1019-1038 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Yoshida: "On calculations of zeros of various L-functions" J.Math.Kyoto Univ.35. 663-696 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Hijikata: "On the decomposition of lattices over orders" J.Math.Soc.Japan. Vol.49. (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ikeda: "On the residue of the Eisenstein series and the Siegel-Weil formula" Comp.Math.103. 183-218 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Hiraga: "On the multiplicities of the discrete series of semisimple Lie groups" Duke Math.J.85. 167-181 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Noumi, T.Umeda and M.Wakayama: "Dual pairs, spherical harmonics, and a Capelli Identity in quantum group theory" Comp.Math.104. 227-277 (1996)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi