• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Machine Discovery by Learning Algorithms

Research Project

Project/Area Number 06452405
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

ARIKAWA Setsuo  Graduate School of Information Science and Electrical Engineering, Department of Informatics, KYUSHU UNIVERSITY Professor, 大学院・システム情報科学研究科, 教授 (40037221)

Co-Investigator(Kenkyū-buntansha) MIYANO Satoru  University of Tokyo, Medical Science Institute, Professor, 医科学研究所, 教授 (50128104)
EIJU Hirowatari  Graduate School of Information Science and Electrical Engineering, Department of, 大学院・システム情報科学研究科, 助手 (60274429)
SHINOHARA Ayumi  Graduate School of Information Science and Electrical Engineering, Department of, 大学院・システム情報科学研究科, 助教授 (00226151)
ZEUGMANN Thomas  Graduate School of Information Science and Electrical Engineering, Department of, 大学院・システム情報科学研究科, 助教授 (60264016)
NIIJIMA Kouichi  Graduate School of Information Science and Electrical Engineering, Department of, 大学院・システム情報科学研究科, 教授 (30047881)
Project Period (FY) 1994 – 1996
Keywordsmachine learning / machine discovery / computational learning theory / inductive inference / PAC learning / learning from numerical data / knowledge discovery in database / logic of machine discovery
Research Abstract

This project aimed at developing machine discovery systems based upon firm theoretical foundations of machine learning algorithms. In this project we have focused our attention specially on (1) computational logic of machine discovery, (2) knowledge representation for machine discovery, (3) machine discovery by PAC learning, (4) machine discovery in databases, and (5) making machine discovery algorithms parallel.
First we have developed a logic of machine discovery compared with the logic of scientific discovery by K.Popper. We have made it clear that the essential of machine discovery is to be able to refute the hypothesis space itself by some observed facts, and showed that there are such rich hypothesis spaces in the framework of the elementary formal systems. Since scientific data are mostly numerical, we have studied representation of real numbers and real-valued functions in terms of recursive reals and interval analysis, and developed a method of identifying differential equations.
We have extended our results on the logic of machine discovery to the PAC learning, which can cope with probably approximately correct hypotheses.
Concerning the machine discovery in database, we have developed a machine discovery system based upon a decision trees over regular patterns called BONSAI,made it parallel, and also developed a prediction system for some domains in amino acid sequences. We have also made some experiments on the field of molecular biology, and got very successful results.

  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] Y.Mukouchi and S.Arikawa: "Towards a mathematical theory of machine discovery from facts" Theoretical Computer Science. 137-1. 53-84 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Shinohara: "Complexity of computing Vapnik-Chervonenkis dimension and some generalized dimensions" Theoretical Computer Science. 137-1. 129-144 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Niijima: "Learning of associative memory networks based upon cone-like domains of attraction" Neural Networks. (to appear). (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Furukawa et al.: "HAKKE : A multi-strategy prediction system for sequence" Genome Informatics 1996. 98-107 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 有川 節夫,橋本 伸幸: "数値データからの微分方程式の学習" 人工知能学会人工知能基礎論研究会資料SIG-FAI-9601. 13-18 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Lange and T.Zeugmann: "Incremental learning from positive data" Journal of Computer and System Science. 53-1. 88-103 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Arikawa and A.Sharma (Ed.): "Algorithmic Learning Theory" Springer-Verlag, 337 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Arikawa et al.: "Machine Intelligence (Vol.15)" Oxford University Press (印刷中), (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Mukouchi and S.Arikawa: "Towards a mathematical theory of machine discovery from facts" Theoretical Computer Science. Vol.137, No.1. 53-84 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Shinohara: "Complexity of computing Vapnik-Chervonenkis dimension and some generalized dimensions" Theoretical Computer Science. Vol.137, No.1. 129-144 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Shimozono, A.Shinohara, T.Shinohara, S.Miyano, S.Kuhara, and S.Arikawa: "Knowledge acquisition from amino acid sequences by machine learning system BONSAI" Trans.of Information Processing Soc.Japan. Vol.35, No.10. (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Arikawa: "Our studies on machine learning and machine discovery (in Japanese)" Journal of Japanese Society for Artificial Intelligence. Vol.11, No.6. 865-873 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Niijima: "Learning of associative memory networks based upon cone-like domains of attraction" Neural Networks. (to appear). (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Furukawa, S.Matsumoto, A.Shinohara, T.Shoudai, and S.Miyano: "HAKKE : A multi-strategy prediction system for sequence" Genome Informatics 1996. 98-107 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Arikawa and N.Hashimoto: "Learning differential equations from numerical data (in Japanese)" SIG-FAI-9601. JSAI. 13-18 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Lange and T.Zeugmann: "Incremental learning from positive data" Journal of Computer and System Science. Vol.53, No.1. 88-103 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Arikawa, M.Sato, A.Shinohara and T.Shinohara: "Developments in computational learning and discovery theory within the framework of elementary formal systems" Machine Intelligence. Vol.15, (to appear). (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi