• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1995 Fiscal Year Final Research Report Summary

VECTOR BUNDLES ON MANIFOLDS

Research Project

Project/Area Number 06640054
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionHIROSHIMA UNIVERSITY

Principal Investigator

SUMIHIRO Hideyasu  Hiroshima Univ., Math. Depart., Professor, 理学部, 教授 (60068129)

Co-Investigator(Kenkyū-buntansha) KOIKE Masao  Kyushu Univ., Math. Depart., Professor, 大学院・数理学研究科, 教授 (20022733)
OKAMOTO Kiyosato  Hiroshima Univ., Math. Depart., Professor, 理学部, 教授 (60028115)
SUGANO Takashi  Hiroshima Univ., Math. Depart., Assist. Professor, 理学部, 助教授 (30183841)
TANISAKI Toshiyuki  Hiroshima Univ., Math. Depart., Professor, 理学部, 教授 (70142916)
Project Period (FY) 1994 – 1995
KeywordsManifolds / Vector Bundles / Infinite dimensional Lie algebras / Modular forms / Feynman path integrals
Research Abstract

In this project, we studied vector bundles on manifolds from the following various points of view. 1) algebraic geometric method., 2) algebraic analytic method to study infinite dimensional Lie algebras and quantum groups., 3) number theoretic method to study modular forms and L-functions on classical groups., 4) differential geometric method to study quantization of infinite dimensional Lie groups by Feynman path integrals. In 1), we obtained a necessary and sufficient condition for a rank 2 bundle on projective space P^n (n <greater than or equal> 4) to split into line bundles by researching algebro-geometric, differential geometric and topological properties of determinantal varieties associated to rank 2 bundles on P^n which gives us a new approach to important conjectures concerning splitting of vector bundles on P^n. In 2), we proved a character formula of Kazdan-Lusztig type for irreducible highest weight modules over affine Lie algebras with integral highest weight case and als … More o extended this result to the rational highest weight case by constructing a theory on Radon transformations of P^1 bundles. Moreover we generalized generic hypergeometric equations on Grassmann varieties to differential equations on Hermite symmetric spaces and researched relations between the above Radon transformations and a condition concerning their holonomicity. In 3), the L-functions which are liftings of cusp forms with half integer weights to modular forms on orthogonal groups were studied in detail and we gave the L-functions an expression by integrals in terms of their Fourier coefficients and proved the meromorphic continuation and the functional equation under some technical conditions which can be viewed as a generalization of the Kohnen-Skoruppa's result on quadratic Siegel cusp forms. In 4), we constructed representation modules of infinite dimensional Lie groups, e.g.Kac-Moody Lie groups by Feynman path integrals and studied integral operators on infinite dimensional manifolds geometrically. Less

  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] M.Kashiwara,T.Tanisaki: "Kazhdan-Lustiz conjecture for affine Lie algcbras with negative level" Duke Mach.J.77. 21-62 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kashiwara,T.Tanisaki: "Kazhdan-Lustiz conjecture for affine Lie algcbras with negative level II,non-integral case." Duke Mach.J.84. 771-813 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Murase,T.Sugano: "Shintari function and its application to automarplic L-functions for Classical groups I" Math.Ann.299. 17-56 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sugano: "Jacobi forms and the theta lifting" Commentarii Mathematici Univ.Sc.Paul.44. 1-58 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Okamoto: "The Borel-Weie theoren and the Feyuman patb integral" International Collogium at Tata Institute of Fundamental Research,Geometiry and Analysis. 275-297 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Okamoto,K.Ogura: "The fundamental representation of the affine Lie algebin Aintl and the Feynman pact integral" Hiroshima Mach.J.231-247 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 堀田良之,谷崎俊之: "D-加群と代数群" シュプリンガー・フェアラーク東京, 308 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Okamoto: "The Borel-Weil theorem and the Feynman path integral, International Colloqium at Tata Institute of Foundamental Research" Geometry and Analysis. 275-297 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Okamoto, K.Ogura, H.Kanno, Y.Togoshi and M.Hamada: "The fundamental representation of the affine Lie algebra A _(n-1) and the Feynman path integral" Hiroshima Math. J.231-247 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Murase and T.Sugano: "Shintani function and its application to automorphic L-functions for classical groups, I.The case of orthogonal groups" Math. Ann. 299. 17-56 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sugano: "Jacobi forms and the theta lifting" Commentarii Mathematici Univ.St.Pauli. 44. 1-58 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Murase and T.Sugano: "Shintani functions and automorphic L-functions for GL (n)" Tohoku Math.J.48. 165-202 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Murase and T.Sugano: "On standard L-functions attached to automorphic forms on definite orthogonal groups"

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Murase and T.Sugano: "On standard L-functions associated with holomorphic cusp forms on O (2, m+2)"

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kato, A.Murase and T.sugano: "Spherical functions on certain spherical homogeneous spaces and Rankin-Selberg convolution"

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kashiwara and T.Tanisaki: "Characters of the negative level highest-weight modules for affine Lie algebras" International Mathematics Research Notices. 3. 151-160 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kashiwara and T.Tanisaki: "Kazhdan-Lusztig conjecture for affine Lie algebras with negative level" Duke Math. J.77. 21-62 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kashiwara and T.Tanisaki: "Kazhdan-Lusztig conjecture for affine Lie algebras with negative level II.non-integral case" Duke Math. J.84. 771-813 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.-J.Kang and T.Tanisaki: "Universal R-matrices and the center of the quantum generalized Kac-Moody algebras" to be published in Horoshima Mathematical Journal.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi