1994 Fiscal Year Annual Research Report
Project/Area Number |
06640060
|
Research Institution | Kyushu University |
Principal Investigator |
佐藤 榮一 九州大学, 大学院数理学研究科, 教授 (10112278)
|
Co-Investigator(Kenkyū-buntansha) |
百武 弘登 九州大学, 大学院数理学研究科, 助教授 (70181120)
鎌田 正良 九州大学, 大学院数理学研究科, 教授 (60038495)
|
Keywords | 単線織多様性 / ファノ多様体 / 有理曲線 / 半アンプルベクトル束 / アジョイント束 |
Research Abstract |
目的:半アンプルベクトル束を接束にもつ射影多様体の構造はどの位homogeneous多様体の言葉で表現できるか? 得られた結果(目的に関連する)は次の通りです。 1)高い次元の射影空間Pで張られる多様体の構造。 XをN次元射影空間内のn次元部分多様体とする。Xの各点xを通るX内のm次元部分射影空間P_xが存在すると仮定する。その時2m【greater than or equal】nなら,Xは次のうちの1つにあたる。射影空間束,2次超曲面グラスマン 注)Xを被うPの族の存在は多様体の大域的構造を支配することを意味する。目的の仮定“T_xが半アンプル"は“Xが2次超曲面又は射影空間で被れる"ことが最近の私の研究で明らかになりつつあり、目的の解決に近づきつつある。 アジョイント束(K_x+detE)に関する結果. Xはn次元射影多様体,EをX上の階数rのアンプルベクトル束とし,K_x+detEはnefでないと仮定する。この時任意標数の下で,又Xがfiber空間の構造がないとすると、1)r=nの時(X,E)は(P^n,θ(1)^<【symmetry】n>)であり,2)r=n-1の時(P^n,θ(1)^<n-1>),(P^n,θ(1)^<n-2>【symmetry】O(2)),(Q^n,θ_Q(1)^<【symmetry】n-1>)の1つである。(これらは目的と深く関連した問題である)
|
-
[Publications] Eiichi Sato: "Smooth projective varieties dominated by smooth quadric hypersurfaces in any characteristic" Mathematische Zeitschrift. 217. 553-565 (1994)
-
[Publications] Eiichi Sato: "Smooth projective varieties with the ample vector bundle 3Tx in any characteristic" Journal of Mathematics of Kyoto University. 35. (1995)
-
[Publications] Masayoshi Kamata: "The multiplicative genus associated with the formal group law (x+y-2axs)/(1-(a^2+b^2)xy)" Osaka Journal of Mathematics. 31. 473-486 (1994)
-
[Publications] Hiroto Hyakutake: "A subset selection procedure for multivariate normal means" Journal of the Japan Statistical Society. 24. 67-72 (1994)