• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Estimates For Integer Points on Algebraic Variety by using Diophantine Approxiwatic

Research Project

Project/Area Number 06640082
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNIHON UNIVERSITY

Principal Investigator

KOHNO Noriko  NIHON UNIVERSITY,Department of Mathematics College of Science and Technology, Lecturer, 理工学部, 専任講師 (90215195)

Co-Investigator(Kenkyū-buntansha) SASAKI Ryuji  NIHON UNIVERSITY,Department of Mathematics College of Science and Technology, Pr, 理工学部, 教授 (50120465)
Project Period (FY) 1994 – 1996
KeywordsDiophantine Approximation / Diophantine equation / Elliptic Curve / Algebraic curve / Integer point / Transcendence / Transcendental Number / Transcendence Measure
Research Abstract

For transcendental number x, we consider Diophantine approximations by algebraic number beta in terms of height of beta and degree of beta. By using such approximation, called transcendental (or transcendence) measure, we observe integer points on algebraic curves, for example, elliptic curves. We obtain here a refinement for such measure when x comes from coordinates of inverse image by exponential map of rational points of an algebraic group defined over a number field, which is defined as a non trivial extention of a simple abelian variety by the additine group. We get also some finiteness result concerning with integer solutions to certain exponential Diophantine equations.

  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] Noriko HIRATA-KOHNO: "Diophantine Approximation on Elliptic Curves" RIMS Kokyuroku. 958. 82-89 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Noriko HIRATA-KOHNO,Tarlok N.,SHOREY.: "On the equation (x^m-1)/(x-1)=y^9 with X Power" Proceedings of Aralytic Number Theory96 conperence. Cambridge U. P.(印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Noriko HIRATA-KOHNO: "Au application of quantitative Subspace thesrem" RIMS Kokyuroku. 886. 81-87 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ryuji SASAKI: "A remark on the moduli space of hyreielliptic period matrices with level 2 structure" Sonderdruck aus Arch. Math. 62. 83-87 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Susumu IROKAWA,Ryuji SASAKI: "On a family of quotieuts of Fermat curuei" Tsukuba J. Math. 19.No.1. (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Susumu IROKAWA,Ryuji SASAKI: "On a family of quotieuts of Fermat curuei" Tsukuba J. Math. 19.No.1. (1995)121-139

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] NORIKO HIRATA-KOHNO: "Diophantine Approximation on Elliptic Curves" RIMS Kokyuroku. vol.958. 82-89 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] NORIKO KOHNO and Tarlok N.SHOREY: "On the equation <@D7x<@D1m@>D1-1(/)x-1@>D7=y<@D1q@>D1 with x power" Proceedings of Analytic Number Theory Conference, Cambridge UP. (To appear). (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] NORIKO KOHNO: "An application of quantitative subspace theorem" RIMS Kokyuroku. vol.886. 81-87 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ryuji SASAKI: "A remark on the moduli space of hyperelliptic period matrices with level 2 structure" Sonderdruck aus Arch.Math.vol.62. 83-87 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Susumu IROKAWA and Ryuji SASAKI: "On a family of quotients of Fermat curves" Tsukuba J.Math.Vol.19-1. 121-139 (1995)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi