• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

RESEARCH OF ARITHMETIC VARIETIES AND ALGEBRAIC/ANALYTIC STACKS

Research Project

Project/Area Number 06640088
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTOKYO INSTITUTE OF POLYTECHNICS

Principal Investigator

MAEHARA Kazuhisa  TOKYO INSTITUTE OF POLYTECHNICS,ENGINEERING,TOKYO INSTITUTE OF POLYTECHNICS ASSOCIATED, 工学部, 助教授 (10103160)

Co-Investigator(Kenkyū-buntansha) UENO Yoshiaki  TOKYO INSTITUTE OF POLYTECHNICS,ENGINEERING,TOKYO INSTITUTE OF POLYTECHNICS ASSO, 工学部, 講師 (60184959)
NAKANE Shizuo  TOKYO INSTITUTE OF POLYTECHNICS,ENGINEERING,TOKYO INSTITUTE OF POLYTECHNICS ASSO, 工学部, 助教授 (50172359)
Project Period (FY) 1994 – 1996
KeywordsIitaka-Viehweg conjecture / vanishing theorem / algbraic stacks / log-algebraic log-stacks / minimal model conjecture / Kummer covering / Kawamata covering / logarithmic poles
Research Abstract

We construct Kummer-Kawamata coverings as algebraic stacks, which play roles such as the curvatures of Hermitian line bundies in complex geometries or the Frobenius maps in the category of varieties over fields of positive characteristics. Applying it, we can translate Esnault-Viehweg vanishing theorems into those in the form of Kawamata vanishings. We obtain vanishing theorems for vector bundles with rational coefficients. We find a general method for enlarging vanishing theorems into those with logarithmic poles. We find divisors on Kummer coverings as algebraic stacks which are assumed to exist in the paper with title Kaehler analogue of Weil conjecture by Serre. However we are not satisfied with it since the theory is not purely algebraic. We prepare more algebro-analytic theory for it. We prove one of Fujita conjecture ; if an ample divisor has the self-intersection number greater than one, the divisor adding a canonical divisor with multiple of the ample divisor more than the dim … More ension of a variety becomes very ample. If the multiple is equal to the dimension, it becomes free. We make use of Kummer coverings and the part of the actions of the automorphism group and induction argument. Fujita found the counter example such that when an ample divisor has the self-intersection of one, the divisor such that the multiple is the dimension plus one does not become free. Studing Esnault-Vehweg type vanishing theorem we find divisors of numerically equivalent to zero are essential instead of those of linearly equivalent to zero if the supports of fractional parts are normal crossing. Hence we define numerical litaka dimension is the maximal Iitaka dimension among the numerical equivalence class. We propose an analogue of Iitaka-Viehweg conjecture for this new dimension. Assuming logarithmic Iitaka-Viehweg conjecture, we obtain the numerical cone theorem as an analogue of Kawamata-Shokulov's Cone theorem and then we have a Zariski decomposition theorem. We define log-stacks to be log-algebraic if there exists a log-scheme dominating the log-stack by surjective log-smooth morphism. We hope this concept is useful in the research of minimal models. We obtain Esnault-Viehweg type vanishing theorems without the resolution of singularities conjecture in the category of varieties over fields of positive characteristics. Also we obtain a vanishing type theorem which works in the category of non Fujiki manifolds. Less

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] K.Matsuda and K.Maehara: "Fujita Conjecture and Numerical equivalence" Academic Report T.I.P.17. 9-16 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Maehara: "Algebraic Champs and Kummer Coverings" Academic Report T.I.P.18. 1-9 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Maehara: "Algebraic stacks of positive characteristcs" Academic Report T.I.P.19. 15-22 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Nakane: "Bifurcation along Arcs in Antiholomorbhic Pynamics" Science Bulletin of Josai Uni.Special lssue. 89-97 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Nakane: "ある種のBaker領域について" Academic Report T.I.P.19. 23-30 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Nakane and Dienk Schleicher: "Tricornの非弧状連結性について" 数理解析研究所講究録. 959. 73-83 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 訳著J-P.Serre著,(植野義昭訳): "株式会社トッパン" ガロア理論特論, 148 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Matsuda and K.Maehara: "Fujita Conjecture and Numerical Equivalence" Acad.Rep.Eng.Tokyo Inst.Polytech.Vol.17. 9-6 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Maehara: "Algebraic Champs and Kummer Coverings" Acad.Rep.Eng.Tokyo Inst.Polytech.Vol.18. 1-9 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Maehara: "Algebraic Stacks of Positive characteristics" Acad.Rep.Eng.Tokyo Inst.Polytech.Vol.19. 15-22 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Nakane: "Bifurcation along Arcs in Antiholomorphic Dynamics" Science Bulletin of Josai Uni.Special Issue. 89-97 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Nakane and D.Schleicher: "Non arcwise connectivity of Tricom" R.I.M.S.Kyoto Uni.Vol.959. 73-83 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Nakane: "A certain Baker domain" Acad.Rep.Eng.Tokyo Inst.Polytech.Vol.19. 23-30 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Nakane: "Attainment of external rays of Mandelbrot sets, R.I.M.S." (to appear). (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.-P.Serre (Translator into Japanese by Y.Ueno): Topics in Galois Theory. Toppan Co., 148 (1995)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi