• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1995 Fiscal Year Final Research Report Summary

Research on Lee Error Correcting AG Codes

Research Project

Project/Area Number 06805032
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 情報通信工学
Research InstitutionTokyo Institute of Technology

Principal Investigator

SAKANIWA Kohichi  Tokyo Institute of Technology.Faculty of Engineering.Professor, 工学部, 教授 (30114870)

Co-Investigator(Kenkyū-buntansha) YAMADA Isao  Tokyo Institute of Technology.Faculty of Engineering.Associate Professor, 工学部, 助教授 (50230446)
JINUSHI Hajime  Aoyama Gakuin University.Faculty of Science and Engineering.Associate Professor, 理工学部, 助教授 (30216246)
Project Period (FY) 1994 – 1995
KeywordsMulti-valued System / Lee Distance / Algebraic Geometric Code / Extended Generalized Reed-Muller Code / Extended BCH Code / Fermat Curve / Surface
Research Abstract

This research was performed to investigate error correcting codes, especially algebraic geometric codes, for multi-valued systems where the Lee distance is preferred to the usual Hamming distance. The research results are summarized as follows :
(1) The minimum Lee and Hamming distances of the extended generalized Reed-Muller codes were derived theoretically and it was clarified that in many parameters the minimum Lee distance exceeds the minimum Hamming distance.
(2) Though it was thought that the algebraic geometric codes are superior to the conventional codes, it was clarified that when the number of redundant symbols is relatively small the BCH codes can be better than the algebraic geometric codes.
(3) The algebraic geometric code on Fermat curve and on Fermat surface were compared and it was clarified that it is not possible to get better codes by using Fermat surface [1].
(4) An improved lower bound for the dimension of subfield subcodes of algebraic geometric codes was derived [2].
(5) The relationship between the BCH codes over the finite field GF (p) and the BCH codes over the finite integer ring Z_<pk> was investigated [3].
References
[1] Jiro Mizutani : "On the Algebraic Geometric Codes Constructed on Algebraic Surfaces, " Graduation Thesis, Tokyo Institute of Technology, Feb., 1995.
[2] Ryutaroh Matsumoto : "Improved Lower Bound for the Dimension of Subfield Subcodes of Algebraic Geometric Codes, " Graduation Thesis, Tokyo Institute of Technology, Feb., 1996.
[3] Shigenori Kasuya : "On the BCH Codes over the Finite Integer Ring Z_<pk>, " Graduation Thesis, Tokyo Institute of Technology, Feb., 1996.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] 渋谷・地主・坂庭: "代数幾何符号の設計距離に関する一検討" 電子情報通信学会 技術研究報告. IT93-112. 37-42 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsugi,Jinushi,Sakaniwa: "Bounds for Non-Binary Synchronization Error Correcting Codes and Their Constructions" Proc.of IEEE ISIT'94. 61-61 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shibuya,Jinushi,Miura,Sakaniwa: "On Designed Distance of Algebraic Geometric Codes" Proc.of 1994 ISIIA. 47-52 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林,渋谷,地主,坂庭: "拡大一般リ-ド・マラ-符号のリ-距離について" 第17回情報理論とその応用シンポジウム講演論文集. F11-1. 645-648 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 渋谷,地主,三浦,坂庭: "代数幾何符号の性能に関する一検討" 第17回情報理論とその応用シンポジウム講演論文集. F11-2. 649-652 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 渋谷,坂庭: "代数幾何符号の部分体部分符号の次元について" 第18回情報理論とその応用シンポジウム講演論文集. A-3-5. 247-250 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shibuya, H.Jinushi and K.Sakaniwa: "On Designed Distance of Algebraic Geometric Codes" Technical Report of IEICE. IT-93-112. 37-42 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Mitsugi, H.Jinushi and K.Sakaniwa: "Bounds for Non-Binary Synchronization Error Correcting Codes and Their Constructions" ProC.of IEEE ISIT'94. 61 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Shibuya, H.Jinushi, S.Miura and K.Sakaniwa: "On Designed Distance of Algebraic Geometric Codes" Proc.of 1994 ISITA. 47-52 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi, T.Shibuya, H.Jinushi and K.Sakaniwa: "On Minimum Lee distance of extended generalized Reed-Muller codes" Proc.of SITA'94. F11-1. 645-648 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Shibuya, H.Jinushi, S.Miura and K.Sakaniwa: "On the Performance of Algebraic Geometric Codes" Proc.of SITA'94. F11-2. 649-652 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Shibuya and K.Sakaniwa: "On the Dimension of Subfield Subcodes of AG Codes" Proc.of SITA'95. A-3-5. 247-250 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Shibuya, H.Jinushi, S.Miura and K.Sakaniwa: "On the Performance of Algebraic Geometric Codes" IEICE Trans.on Fundamentals. 928-937 (1996)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi