• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1995 Fiscal Year Final Research Report Summary

Theory on Dynamics of Growing Surfaces with Self-Affinity

Research Project

Project/Area Number 06835009
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 非線形科学
Research InstitutionShinshu University

Principal Investigator

HONDA Katsuya  Faculty of Science, Professor, 理学部, 教授 (50109302)

Co-Investigator(Kenkyū-buntansha) MITSUI Takemoto  Graduate School of Human Informatics, Nagoya University, Professor, 大学院人間情報研究科, 教授 (50027380)
Project Period (FY) 1994 – 1995
KeywordsSelf-Affine Fractal / Stochastic Differential Equation / Scaling Law / Rough Surface
Research Abstract

Growing rough surfaces with self-affine symmetry are widely seen in nature and technological fields. We are interesting in such a fact that the height fluctuation of surface satisfies a scaling law with respect to time and space. The purpose of this project is to obtain the scaling exponents as functions of substrate dimensionality d. We expect that there are universality classes even in growth phenomena far from equlibrium states, as known in critical phenomena. The first theoretical breakthrough has been brought by Kardar, Parisi and Zhang (KPZ) by introducing a stochastic differential equation. Although this equation has a very simple form, it has been a very difficult problem to derive the scaling exponents from a theoretical point of view. We pointed out that the white-noise assumption in the KPZ equation is not valid for d>2. In the linearized version, we proved that the assumption cannot be accepted to obtain a finite width of surfaces, and the surfaces should be smooth for d>2.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 本田勝也: "フラクタルとは何か" 高分子. 43. 222-225 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 本田勝也: "荒れた成長界面のダイナミックス" 日本物理学会誌. 49. 819-826 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 本田勝也: "成長する荒れた界面の形とダイナミックス" 科学. 66. 184-192 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.C.Halsey,K.Honda dB.Duplantier: "Multifractal Dimensions for Branched Growth" J.Stat.Phys.(掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Katsuya Honda: "Scaling Theory on Growing Rough Surfaces" Fractals. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Mitsui: "Stability analysis of numerical solution of stochastic differential equations" 数理解析研究所講研録. 850. 1-14 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Katsuya, Honda: "What are Fractals?" Koubunsi. 43. 222-225 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Katsuya, Honda: "Dynamics of Growing Rough Surfaces" Nihon Butsuri Gakkaisi. 49. 819-826 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Katsuya, Honda: "Form of Growing Rough Surfaces and their Dynamics" Kagaku. 66. 184-192 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.C.Halsey, H.Honda and B.Duplantier: "Multifractal Dimensions for Branched Growth" J.Stat. Phys.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Katsuya, Honda: "Scaling Theory on Growing Rough Surfaces" (to appear) Fractals.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Mitsui: "Stability analysis of numerical solution of stochastic differential equations" Suurikaiseki Kenkyusyo Koukyuroku. 850. 1-14 (1995)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1997-03-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi