• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Study of Nonlinear problems in Geometry

Research Project

Project/Area Number 07454012
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

NISHIKAWA Seiki  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (60004488)

Co-Investigator(Kenkyū-buntansha) ARAI Hitoshi  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (10175953)
HORIHATA Kazuhiro  Tohoku University, Graduate School of Science, Research Associate, 大学院・理学研究科, 助手 (10229239)
NAYATAMI Shin  Tohoku University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (70222180)
NAKAGAWA Yasuhiro  Tohoku University, Graduate School of Science, Research Associate, 大学院・理学研究科, 助手 (90250662)
BANDO Shigetoshi  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40165064)
Project Period (FY) 1995 – 1996
KeywordsGeometry of manifolds / Nonlinear problem / Geometric variational problem / Harmonic map / Moduli space / Einstein-Kaehler metric / Strongly pseudo-convex CR manifold / 強擬凸CR多様体
Research Abstract

The purpose of this project is to study Nonlinear Problems, arising in researches of deformation of various geometric structures and their moduli spaces, from the point of view of Geometric Variational Problems. The following is the summary of principal results obtained under the project.
1. Nishikawa studied the Dirichlet problem at infinity for harmonic maps between general k-term Carnot spaces, which are homogeneous spaces of negative curvature obtained as solvable extension of k-step nilpotent Carnot Lie groups. He found the necessary conditions for the boundary values on ideal boundaries, and proved the existence and uniqueness of solutions when given boundary values are nondegenerate.
2. Bando studied the degeneration phenomena od Hermitian-Einstein metrics on stable holomorphic vector bundles over a compact Kaehler manifold, and proved that the moduli spaces of these bundles can be compactified by adding reflexive sheaves as their boundaries.
3. Nakagawa studied the existence problem of Einstein-Kaehler metrics, and proved combrinatiorial formulae describing the Futaki invariants and generalized Killing forms on toric Fano orbifolds terms of data read off from their corresponding convex bodies.
4. Nayatani constructed in a standard way pseudo-Riemannian metrics compatible with the pseudo-conformal structures on the ideal boundaries of rank one locally Riemannian symmetric space of noncompact type.
5. Horihata studied the nonlinear parabolic system of partial differential equations associated with harmonic map, and proved the partial regularity of weak solutions based on the monotonicity formula in the case when the space is 3 dimensional.
6. Arai proved the best possible estimate for solutions of pseudo-differential equations on nilpotent Lie groups, and applied it to obtain the best possible estimate for solutions of the tangential Cauchy-Riemann equation on strongly pseudo-convex CR manifolds.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] S.Nayatani: "Patterson-Sullivan measures and conformally flat metrics" Mathematische Zeitshrift. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Nayatani: "Morse indices of Yang-Mills connections over the unit sphere." Composito Mathematica. 98. 177-192 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] C.LeBrun: "Self-dual manifolds with positive Ricci curvature" Mathematische Zeitshrift. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Horihata: "Weak solutions of harmonic mappings on a bounded Minkowski space-time with initial-boundary conditions" Communications in Partial Differential Equations. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Horihata: "On a partial regularity of the modified strong heat flows for harmonic mappings into spheres" Indiana University Mathematical Journal. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Arai: "Degenerate elliptic operators, H^1 spaces and diffusions on strongly pseudoconvex domains" Proceedings of Geometric Complex Analysis,World Scientific. 35-42 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Nishikawa: "Lectures on Geometric Variational Problems" Springer-Verlag, 160 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Nayatani: "Patterson-Sullivan measures and conformally flat metrics" Mathematische Zeitschrift. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Nayatami: "Morse indices of Yang-Mills connections over the unit sphere" Composito Mathematica. 98. 177-192 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] C.LeBrun: "Self-dual manifolds with positive Ricci curvature" Mathematische Zeitschrift. 224. 49-63 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Horihata: "On a partial regularity of the modified strong heat flows for harmonic mappings into spheres" Indiana University Mathematical Journal. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Horihata: "Weak solutions of harmonic mappings on a bounded Minkowski space-time with initial-boundary conditions" Communications in Partial Differential Equations. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Arai: "Degenerate elliptic operators, h^1 spaces and diffusions on strongly pseudoconvex domains" Proceedings of Geometric Complex Analysis, World Scientific. 35-42 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W.-M.Ni: "Point condensation generated by a reaction-diffusion system in axially symmetric domains" Journal of Industrial and Applied Mathematics. 12. 327-365 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Ishida: "Convex sets in the p-adic open ball" Suurikaisekikenkyusyo Kokyuroku. 934. 79-105 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Nishikawa and R.Schoen: Lectures on Geometric Variational Problems. Springer-Verlag, 160 (1996)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi