• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1997 Fiscal Year Final Research Report Summary

Computational Complexity of Automated Theorem Proving

Research Project

Project/Area Number 08044158
Research Category

Grant-in-Aid for international Scientific Research

Allocation TypeSingle-year Grants
SectionJoint Research .
Research Field 計算機科学
Research InstitutionKYOTO UNIVERSITY (1997)
Kyushu University (1996)

Principal Investigator

IWAMA Kazuo  Graduate School of Engineering, Professor, 工学研究科, 教授 (50131272)

Co-Investigator(Kenkyū-buntansha) PAUL Purdom  Indiana University, CS,Professor, 計算機科学科, 教授
RUSSELL Impagliazzo  University of California San Diego, CS & E,Associate Professor, 計算機科学科, 助教授
SAKURAI Kouichi  Kyushu University, CS & CE,Associate Professor, 大学院・システム情報科学研究科, 助教授 (60264066)
TONIANN Pitassi  University of Arizona, CS,Assistant Professor, 計算機科学科, 助教授
Project Period (FY) 1996 – 1997
Keywordstheorem proving / Resolution / computational complexity
Research Abstract

Automated theorem proving system is one of the most popular topics of AI field and has been discussed by many researchers. However, there is no perspective of making it into practical use because of the lack of fundamental analysis on it. In this research work, we discussed the intractability of Resolution, a theorem proving system of tautology. We obtained the following results :
(1) A lot of effort has been done for the problem of finding Resolution proofs and fast algorithms are developed recently. We analyzed this problem in terms of optimization, i.e., the problem of finding shortest Resolution proofs. We showed that the problem of finding a proof of length less than S+O(n^d) is NP-hard, where n is the number of variables, S is the length of the shortest proof, and d is an arbitrary constant.
(2) We discussed the relation between Resolution and Backtracking method, an algorithm for CNF Satisfiability problem (SAT). We showed that a search tree of Backtracking can be obtained from Resolution proof without increasing the size of the tree, and vice versa.
(3) We found a set of CNF formulas such that we can reduce the length of the proof by adding redundancy. Let NH be the set of formulas obtained by translating some graph problem into SAT.NH needs exponential length of Resolution proof. However, if we add small number of clauses to formulas in NH,we can prove NH in polynomial number of steps. In some occasions, we solve hard combinatorial problems translating into SAT.In this case, it seems reasonable to translate the original problem into short formulas. However, our result shows that there are some occasions in which redundancy plays an important role.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Iwama,K.,: "A canonical from of vector machines" Information and Computation. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwama,K.: "Better approximations of non-Hamiltonian graphs" Discrete Applied Mathematics. 81. 239-261 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwama,K.: "Complexity of Finding Short Resolution Proofs" Proc.22nd Symposium on Mathematical Foundation of Computer Sceince(MFCS'97). LNCS1295. 309-318 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwama,K.: "Three-dimensional mashes are less powerful than two-dimesional ones in oblivious routing" Proc.Fifth Europian Symposium on Algorithms(ESA'97). LNCS1284. 284-295 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwama,K.: "Local search algorithms for partial MAXSAT" Proc.AAAI'97. 263-268 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwama,K.,: "Random benchmark circuits with controlled attributes" Proc.European Design & Test Conference and Exhibition(ED&TC'97). 90-97 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwama,K.: "A faster parallel algorithm for k-connectivity" Information Processing Letters. 61. 265-269 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwama,K.: "Oblivious routing algorithms on the mesh of buses" Proc.11th International Parallel Processing Symposium. 721-727 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwama, K.and Iwamoto, C.: "A canonical form of vector machines" Information and Computation. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Iwama, K.and Miyano, E.: "Better approximations of non-Hamiltonian graphs" Discrete Applied Mathematics. Vol.81. 239-261 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Iwama, K.: "Complexity of Finding Short Resolution Proofs" Proc.MFCS'97. LNCS 1295. 309-318 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Iwama, K.and Miyano, E.: "Three-dimensional mashes are less powerful than two-dimesional ones in oblivious routing" Proc.ESA'97. LNCS 1284. 284-295 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Cha, B., Iwama, K., Kambayashi, Y.and Miyazaki, S.: "Local search algorithms for partial MAXSAT" Proc.AAAI'97. 263-268 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Iwama, K., Hino, K., Kurokawa, H.and Sawada, S.: "Random benchmark circuits with controlled attributes" Proc.ED&TC'97. 90-97 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi