• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1997 Fiscal Year Annual Research Report

複素多様体とタイヒミュラー空間

Research Project

Project/Area Number 08304014
Research InstitutionOsaka City University

Principal Investigator

今吉 洋一  大阪市立大学, 理学部, 教授 (30091656)

Co-Investigator(Kenkyū-buntansha) 小森 洋平  大阪市立大学, 理学部, 助手 (70264794)
西尾 昌治  大阪市立大学, 理学部, 講師 (90228156)
谷口 雅彦  京都大学, 大学院・理学研究科, 助教授 (50108974)
神谷 茂保  岡山理科大学, 工学部, 教授 (80122381)
野口 潤次郎  東京工業大学, 理学部, 教授 (20033920)
Keywordsタイヒミュラー空間 / 複素多様体 / リーマン面 / クライン群 / 擬等角写像 / 多変数函数論 / ポテンシャル論 / 値分布
Research Abstract

研究代表者はタイヒミュラー空間論,クライン群,複素解析,および双曲三角法を応用して、種数2以上のコンパクトなリーマン面の間の非定数正則写像の個数を具体的に評価した。この方法は,コンパクトでない双曲的なリーマン面の間の非定数正則写像の個数評価にも適用可能であり、その研究成果を執筆中である.リーマン面の間の調和写像は,正則2次微分と密接に関連しているが,この観点から,ポアンカレ距離とベルグマン距離を用いて,リーマン面の間の調和写像と正則写像の関係を考察し,調和写像が正則写像になるための必要十分条件を得た.
小森は,SL(2,R)の表現を使って,タイヒミュラー空間の半代数的な記述を行い,その応用をした.奥村は,リーマン面上の閉測地線の角度を用いてタイヒミュラー空間に座標を導入する問題を考察し,重要な結論を得た.佐官は単位円周上の位相写像を単位円板内に複素数値の調和関数によって拡張したとき,それが擬等角写像になるかどうかの研究を行った.これは,タイヒミュラー空間を単位円周上の写像でとらえる観点に関連するものである.谷口は普遍タイヒミュラー空間においてブロックノルムを考察し,それがカラテオドリの意味での幾何学的収束と同値であることを証明した.
神谷は複素単位球体に作用するユニタリ群の放物型の元の作用を考察した.正岡はリーマン面のコンパクト化に関連して,複素平面内の領域の有限葉有界被覆面の調和次元に対する,最小細位相による特徴付けを求め,その具体例への応用も与えた.米谷は,リーマン面の埋め込みに関して,最も効率的なものは何かという問題を考察した.
野口は,代数関数体上でカルタン-ネヴァリンナ理論の第2主要定理を証明し,有理点の有限性に応用した.戸田は複素平面における正則曲線の第二基本定理とdefect relationを研究し,カルタンの結果を改良した.森は,多変数正則写像の不足指数の興味深い例を構成した.
西尾は,熱方程式との関連で多重温度と云う概念を導入し,その平均値の性質を考察した.
さらに,研究分担者と研究協力者達によって、上記の内容に直接的あるいは間接的に関係する形でタイヒミュラー空間,リーマン面,擬等角写像,クライン群,等角写像,ポテンシャル論,多変数函数論などに関して多くの成果が得られた.

  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] 今吉洋一: "An eotimate of number of non-constant holomorphic maps between Riemann surfaces" Topology and Teichmuller Spaces. 57-78 (1996)

  • [Publications] 今吉洋一: "A remark on Poincome and Bergman metuca,and harmonic and helomorphic maps on a Riemann susface" Proceedings of the 5th Intirnational Conference on Finite or Infimite Dimusional Conplex,Beijin,Chima,1997. (発表予定).

  • [Publications] 神谷茂保: "Discrete snbgrops of P(1,2;C)with Heismberg translations" Proceedings of the 5th International Conference on Fimite on Infinite Dimensional Complex Analysis,Beijin,China,1997. (発表予定).

  • [Publications] 奥村善英: "Global real analytic angle paremetera for Teichmiiller spaces" J.Math.Soc.Japan. 49. 213-229 (1997)

  • [Publications] 小森洋平: "Semialgebraic Description of Teichmiiller Space" Publication of R.I.M.S.Kyoto Univ.33(4). 527-571 (1998)

  • [Publications] 佐官謙一: "A note on non-quasiconfermal harmonic extensions" Bull.Soc.Sci.Lettres,Sirce,Recherches sun les leformations 23,todz47. 47. 51-63 (1997)

  • [Publications] 谷口雅彦: "Bloch topology of the universal Teichmiiller space" Topology and Teichmiiller Spaces. 279-293 (1996)

  • [Publications] 戸田暢茂: "On the fundamental imequality for mon-degenerate holom arphic curves" Kodai meth.J. 29. 178-196 (1997)

  • [Publications] 西尾昌治: "A general form of a mean value property for polytemperatures on a strip8 domain" Proc.of the 7th Internatlonal Colls quuium on Differential Equations. 269-276 (1997)

  • [Publications] 野口潤次郎: "Nevalima-Caran theory over function fields and a Diophantine equation" J.reine angew.Math.487. 61-83 (1997)

  • [Publications] 米谷文男: "What is an optinal embedding?" Proc of the 5th International Conference on Finite on Infinite Dimevional Complex Anclysis,Beijin,china,1997. (発表予定).

  • [Publications] 正岡弘照: "Harmonic dimension of coveing surfaces and minimal fine neighborhood" Osaka J.Math.34. 659-672 (1997)

  • [Publications] 森 正気: "Elimiration of defects of meronaplic moppings of G^m into P^m(G)" Amm.Acad Sci.Fenn.(発表予定).

  • [Publications] 今吉洋一: "複素関数概説" サイエンス社, 195 (1997)

  • [Publications] 小林昇治: "応用数学" 近代科学社, 197 (1996)

  • [Publications] 谷口雅彦: "The Theory of Kleinian Groups" Oxford University Press(印刷中),

  • [Publications] 野口潤次郎: "Introduction to Complex.Analysis" Amer.Math.Soc., 250 (1997)

  • [Publications] 奥村善英: "双曲幾何学への招待" 培風館, 192 (1996)

URL: 

Published: 1999-03-15   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi