• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1997 Fiscal Year Final Research Report Summary

Research on number theory in finite fields

Research Project

Project/Area Number 08454008
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

KOIDE Masao  KYUSHU UNIVERSITY Graduate School of Mathematics, Professor, 大学院・数理学研究科, 教授 (20022733)

Co-Investigator(Kenkyū-buntansha) YOSHIDA Eiji  KYUSHU UNIVERSITY Graduate School of Mathematics, Assistant Professor, 大学院・数理学研究科, 講師 (20220626)
SUEYOSHI Yutaka  KYUSHU UNIVERSITY Graduate School of Mathematics, Asistant Professor, 大学院・数理学研究科, 講師 (80128040)
KANEKO Masanobu  KYUSHU UNIVERSITY Graduate School of Mathematics, Assosiate Professor, 大学院・数理学研究科, 助教授 (70202017)
Project Period (FY) 1996 – 1997
Keywordsfinite field / hypergeometric polynomials / arithmetic triangle group / supers ingular elliptic curve / modular function / j-invariant
Research Abstract

We computed hypergeometric polynomials F (a, b, c ; x) over the finite field Fp for many sets (a, b, c) and primes p. As a result of these computations, we can find 9 sets (a, b, c) of rational numbers which hypergeometric polynomials F (a, b, c ; x) over Fp has striking properties in common. In fact, they corresponds to 9 non-compact arithmetic triangle groups which are commensurable to each other. Their properties in common are as follows : F (a, b, c ; x) can be factorized into linear factors and quadratic factors only. We get a conjecture that the number of linear factors are described as a finite sum of class numbers of imaginary quadratic fields which are determined by the prime p. There are quadratic and higher transformations between these F (a, b, c ; x) over Fp corresponding to the inclusion relation of triangle groups. To prove these results, we used the fact that the roots of some F (a, b, c ; x) = 0 are related to supersingular elliptic curves. For each triangle group, we can find that there exists a special modular function like the j-function with respect to SL_2 (Z) and they play the crutial role in this theory. Moreover we find that the theory of modular forms with respect to these triangle groups can be almost uniformly described through hypergeometric functions. We studied Atkin orthogonal polynomials whose reduction modulo p give supersingular j-polynomials. We can describe these polynomials explicity by hypergeometric functions.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] M.Koike: "A note on hypergeometric polynomials over the finite finlds," Proc.Jangjun Intern.Conf.of Math.Sciences.(to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Koike: "On hypergeometric polynomials over finite fields" Tohoku Math. Journal. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kaneko: "Supersingular j-invariants,hypergeometric series and Atkin's orthogonal polynomials" AMS/IP Studies in Advanced Math.7. 97-126 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Asai: "Zeros of certain modular functions and an appli cation" Comment.Math.Univ.St Pauli. 46. 93-101 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Sueyoshi: "On a comparison of 4-ranks of the narrow ideal class groups of Q(√<m>)and Q(√<-m>)" Kyushu J.Math. 51. 261-272 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E.Yoshida.: "Remark on the Kuznetsov trace formula" Analytic Number Theory LMS 247,Cambridge Univ.377-382 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Koike: "A note on hypergeometric polynomials over the finite fields" Proc.Jangjun Intern.Conf.of Math.Sciences. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Koike: "On hypergeometric polynomials over finite fields" Tohoku Math.Journal. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kaneko: "On H.Ito's observation on coefficients of the modular polynomials" Proc.of Japan Acad.72. 95-96 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kaneko and D.Zagier: "Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials" "Computational Perspectives on Number theory", AMS/IP Studies in Advanced Math. 7. 97-126 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.kaneko: "Poly-Bernoulli numbers" J.Theorie des Nombres. 9. 199-206 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Asai, M.Kaneko and H.Ninomiya: "Zeros of certain modular functions and an application" Comment.Math.Univ.St Pauli. 46. 93-101 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Sueyoshi: "On a comparison of 4-ranks of the narrow ideal class groups of Q(ROO<m>) and Q(ROO<-m>)" Kyushu J.Math.51. 261-272 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E.Yoshida: "Remark on the Kuznetsov trace formula" Analytic Number Theory LMS 247, Cambridge Univ.Press. 377-382 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi