• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Uniformization Theorems on Manifolds

Research Project

Project/Area Number 08454015
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo Institute of Technology

Principal Investigator

FUTAKI Akito  Tokyo Institute of Technology, Faculty of Science, Professor, 理学部, 教授 (90143247)

Co-Investigator(Kenkyū-buntansha) HATTORI Toshiaki  Tokyo Institute of Technology, Faculty of Science, Research Associate, 理学部, 助手 (30251599)
TSUJI Hajime  Tokyo Institute of Technology, Faculty of Science, Assistant Professor, 理学部, 助教授 (30172000)
ISHII Shihoko  Tokyo Institute of Technology, Faculty of Science, Assistant Professor, 理学部, 助教授 (60202933)
KUROKAWA Nobushige  Tokyo Institute of Technology, Faculty of Science, Professor, 理学部, 教授 (70114866)
TANNO Shukiti  Tokyo Institute of Technology, Faculty of Science, Professor, 理学部, 教授 (10004293)
Project Period (FY) 1996
KeywordsEinstein metrics / Futaki Character / Minimal hypersurface / Singularity / Algebraic variety
Research Abstract

Futaki studied on the relationship between the existence of Kaehler-Einstein metrics, stability of algebraic manifolds in the sense of Mumford and the nontriviality of the Futaki character.
Tanno studied on the conjecture that there would not exist any L^2 harmonic forms on complete stable minimal hypersurfaces in Euclideam (m+1)-space, and proved affirmatively for m<5.
Ishii constructed canonical models, minimal models and logarythmic canonical models for arbitrary nondegenerate hypersurface singularities. She also constructed minimal models for divisors of toric varieties. She construted a counter-example to a conjecture of Reid concerning canonical singularities. Tsuji analyzed the structure of canonical rings using singular metrics. He considered a construction of the moduli spaces of algebraic varieties of general type.
Hattori considered the case where the holonomy groups induced by the projevtive structures on Riemann sufaces are discrete, and showed that only pseudo Fuchsian groups can appear when they are stable.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] A.Futaki,T.Mabuchi: "Bilinear forms and extremal Kahler vector fields" Mathematishe Annalen. 301. 199-210 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tanno: "L^2 harmonic forms and stability of minimal hypersurfaces" Journal of Mathematical Society of Japan. 48. 761-768 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Ishii: "The canonical modifications by weighted blow-ups" Journal of Algebraic Geometry. 5. 783-799 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Tsuji: "Global generation of adjoint bundles" Nagoya Mathematical Journal. 142. 5-16 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hattori: "Non-combability of Hilbert modular groups" Communications in Analysis and Geometry. 3. 223-251 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hattori: "Asymptotic geometry of arithemetic guctients of symmetric spaces" Mathematische 2eitschrift. 222. 247-277 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 加藤和世,黒川信重,斉藤毅: "数論1" 岩波書店, 180 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Futaki and T.Mabuchi: "Bilinear forms and extremal Kaehler vector fields" Math.Ann.301. 199-210 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Tanno: "L^2 harmonic forms and stability of minimal hypersurfaces" Journ.Math.Soc.Japan. 48. 783-799 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Ishii: "The canonical modifications by weighted blow-ups" J.Alg.Geom. 5. 783-799 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Tsuji: "Global generation of adjoint bundles" Nagoya Math.J.142. 5-16 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Hattori: "Non-combability of Hilbert modulas groups" Communications in Analysis and Geometry. 3. 223-251 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Hattori: "A symptotic geometry of arithmetic quatients of symmetric spaces" Mathematische Zeitschrift. 222. 247-277 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kato, N.Kurokawa, T.Saito: SURON-1. Iwanami Boooks, 180 (1996)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi