• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Constructions of Matrix representations of Hecke algebras through W-graphs

Research Project

Project/Area Number 08454019
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNARA WOMEN'S UNIVERSITY

Principal Investigator

OCHIAI Mitsuyuki  Nara Women's University Department of Information and Computer Sciences Professor, 理学部, 教授 (70016179)

Co-Investigator(Kenkyū-buntansha) YAMASHITA Yasushi  Nara Women's University Department of Information and Computer Sciences Assistan, 理学部, 講師 (70239987)
KOBAYASHI Tsuyoshi  Nara Women's University Department of Information and Computer Sciences Professo, 理学部, 教授 (00186751)
WADA Masaaki  Nara Women's University Department of Information and Computer Sciences Associat, 理学部, 助教授 (80192821)
KAKO Fujio  Nara Women's University Department of Information and Computer Sciences Professo, 理学部, 教授 (90152610)
Project Period (FY) 1996
KeywordsKnots / Matrix representations / Hecke Algebras / Invariants / Braids / W-graphs / Computer aided software / parallel invariants
Research Abstract

The purpose of this research is to construct a software to assist researches about Knot Theory. It assists to compute all polynomial invariants and in particular, parallel polynomial invariants related with knots and links. We had constructed a computer software, Knot Theory by Computer which works on Windows 95 and Windows NT.The software has the following features :
(1)to construct knots and links by mouse tracking,
(2)to deform knots by mouse operations,
(3)to visualize knots and links by 3-dimensional computer graphics,
(4)to compute all polynomial invariants which have already known,
(5)to compute 3-parallel polynomial invariants associated with 3,4, and 5 braids
(6)to recognize to whether a knot to be trivial or not (but not complete),
This software will be distributed worldwide through leternet (ftp.ics.nara-wu.ac.jp) by the end of April, 1998. In future research, we will construct new features to compute 4-parallel polynomial invariants associated with 4-braids and establish a method to construct any irreducible representations associated with Hecke algebras. The well known Lascoux-Schutzenberger's method is correct by up to 13 of braid index but false greater than 13.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] 落合・鴨・土井・今藤: "結び目と平面グラフの最適埋蔵" 情報処理学会・数理モデル化と問題解決・報告集. 10-5. 33-40 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi, M.Kobayashi: "On Canonical genus and free genus of knots." J.of Knot theovy and its ramifications. 5. 77-85 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi, D.Heath: "Essential tangle decomposition from thin position of a link." Pacific J.Math.179. 107-117 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Wada, Yamashita, Yoshida: "An inequality for poly-hedra and ideal triangulation of cusped hyperbolic3-manifolds." Proc. Amer.Math.Soc. 124. 3905-3911 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Wada: "Parabolic representation of the groups of mutant knots." J. of knot theory and its ramifications.6. 895-904 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 今藤・落合: "結び目理論研究支援ソフトウェアにおける自明な結び目判定アルゴリズム" 情報処理学会・数理モデル化と問題解決・報告集. 6. 1-6 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 落合・山田・豊田: "コンピュータによる結び目理論入門" 牧野書店, 193 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] OCHIAI,KAMO,DOI,AND IMAFUJI (in Japanese): "Nicely embeddings of knots and planar graphs" Information Processing Society of Japan, Mathematical Modelling and Problem Solving Report. 5. 33-40 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.KOBAYASHI AND M.KOBAYASHI: "On canonical genus and free genus of knots" J.of Knot theory and its ramifications. 5. 77-85 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.KOBAYASHI AND D.HEATH: "Essential tangle decomposition from thin position of a link" Pacific J.Math. 179. 107-117 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.WADA,Y.YAMASHITA,AND H.YOSHIDA: "An inequality for polyhedra and ideal triangulation of cusped hyperbolic 3-manifolds" Proc.A.M.S.124. 3905-3911 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.WADA: "Parabolic representation of thegroups of mutant knots" J.of Knot theory and its ramifications. 6. 895-904 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.IMAFUJI AND M.OCHIAI (in Japanese): "Computer aided Knot theory and an algorithm to Recognize whether a knot to be trivial" Information Processing Society of Japan, Mathematical Modelling and Problem Solving Report. 6. 1-6 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] OCHIAI,YAMADA,AND TOYODA (in Japanese): Introduction to Computational Knot Theory. Makino Shoten, 1-193 (1996)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi