• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1997 Fiscal Year Final Research Report Summary

Mathematical Problems in Quantum Field Theory and Infinite-Dimensional Analysis

Research Project

Project/Area Number 08454021
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionHOKKAIDO UNIVERSITY

Principal Investigator

ARAI Asao  Hokkaido University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80134807)

Co-Investigator(Kenkyū-buntansha) MIKAMI Toshio  Hokkaido University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (70229657)
INOUE Akihiko  Hokkaido University Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (50168431)
TSUDA Ichiro  Hokkaido University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (10207384)
KISHIMOTO Akitaka  Hokkaido University Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00128597)
AGEMI Rentaro  Hokkaido University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (10000845)
Project Period (FY) 1996 – 1997
Keywordscanonical commutation relations (CCR) / gauge theory / qauntum field / Dirac operator / supersymmetric qauntum field theory / Fock space / Schrodinger operator
Research Abstract

(1) Representations of canonical commutation relations (CCR) appearing in a (non-commutative) gauge theory on a non-simply connected region of R^3 have been analyzed indetail. These representations are realized by the set of the position and the physical momentum operators. Properties of the strongly continuous 1-parameter unitary groups generated by the physical momentum operators (commutation relations, irreducibility etc.) were clarified as well as connections to the Aharonov-Bohm effect, representations of quantum groups and quantum lattice gauge theory. Moreover, the coupling of the quantum system to a quantized radiation field was considered. As a result, new classes of representations of CCR were discovered on the tensor product Hibert space of L^2 (R^3) and the Fock space of the quantized radiation field. These are original discoveries.
(2) A necessary and sufficient condition for two Dirac operators on the boson-fermion Fock space to strongly anticommute was characterized in terms of the strong anticommutativity of Dirac operators on the one-particle base Hilbert space.
(3) A class of representations of CCR with infinite degrees of freedom (or indexed by an infinite dimensional Hilbert space) was constructed in connection with perturbation problem of embedded eigenvalues in quantum field models.
(4) A new estimate for the groundstate energy of the Schrodinger operator was derived.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] A, Arai: "Representation-theoretic aspects of two-dimensional quantum systems in singular vector potentials: canonical commutaiton relations,quantum algebras,and reduction to lattice quantum systems," Journal of Mathematical Physics. 39(in press). (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Asao, Arai: "Strong anticommutativity of Dirac operators on boson-fermion Fock spaces and representations of a supersymmetry algebra," Mathematrsche Nachrichten. (in press). (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Asao, Arai: "A new estimate for the groundstate energy of Schrcdiuger operators" Letters in Mathematical Physics. 42. 215-227 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Asao, Arai: "On the exrstence and unaqueness of a generalized spn-boson model" Journal of Functional Anolysts. 151. 455-503 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Asao, Arai: "A class of representations of the *-Hgebra of the canontcal commutatoon velatrons over a Hilbert space and instability it embedded ergenralues" Journal of Nonlinear Mathematical Physics. 4. 338-349 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 新井 朝雄: "ヒルベルト空間と量子力学" 共立出版社, 276 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 新井 朝雄: "場の量子論の数学的方法入門" 大阪大学 Osaka Mathematical Publications, 226 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Asao Arai: "Representation-theoretic aspects of two-dimensional quantum systems in singular vector potentials : canonical commutaiton relations, quantum algebras, and reduction to lattice quantum systems" Journal of Mathematical Physics. (in press)39. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Asao Arai: "Strong anticommutativity of Dirac operators on boson-fermion Fock spaces and representations of a supersymmetry algebra" Mathematische Nachrichten. (in press). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Asao Arai: "A new estimate for the groundstate energy of Schrodinger operators" Letters in Mathematical Physics. 42. 215-227 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Asao Arai: "On the existence and uniqueness of ground states of a generalized spin-boson model" Journal of Functional Analysis. 151. 455-503 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Asao Arai: "A class of representations of the **-algebra of the canonical commutation relations over a Hilbert space and instability of embedded eigenvalues in quantumfield models" Journal of Nonlinear Mathematical physics. 4. 338-349 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Asao Arai: Hilbert Space and Quantum Mechanics. Kyouritsu-syuppan, 276 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Asao Arai: Introduction to Mathematical Methods of Quantum Field Theory. Osaka University Osaka Mathematical Publications, 226 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi