• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Analysis and Applications of Teichmuller space

Research Project

Project/Area Number 08454026
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

TANIGUCHI Masahiko  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (50108974)

Co-Investigator(Kenkyū-buntansha) SUGAWA Toshiyuki  Kyoto Univ., Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (30235858)
KOKUBU Hiroshi  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (50202057)
OKAJI Takashi  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (20160426)
NOMURA Takaaki  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30135511)
HIRAI Takeshi  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70025310)
Project Period (FY) 1996
KeywordsTeichmuller space / Complex dynamics / Kleinian groups / Quasiconformal map / Riemann surface / Fractal sets / Julia sets / Hausdorff dimension
Research Abstract

The results can be devided into two categories ; those on the Teichmuller spaces and those on objects which provide the Teichmuller spaces. Among oter things, the research on the Teichmuller spaces of infinite dimension is very important.
The Head investigator Taniguchi has clarified the fundamental structures of the Teichmuller space of a transcendental entire function, including the relationship between the absence of wandering domains and finite dimensionality of the corresponding Teichmuller space. These results are the coproduct with T.Harada, a graduate student, and very important, for they give a new light for the investigations on the complex dynamics induced by transcendental entire functions as in the cases of rational functions and of Kleinian groups.
Also Taniguchi has investigated the coiling property, appeared only in the case of infinite dimension, and proved that the Bloch convergence on the universal Teichmuller space is equivalent to Caratheodory convergence, when we consider points of the universal teichmuller space as fractal sets on the plane.
Next, a crucial divice for the Teichmuller theory is a quasiconformal map. Investigator Sugawa has suceeded to give a characterization of the Teichmuller spaces of finite Riemann surfaces without cusps. Sugawa has also given quantative estimate on domain constants related to uniform perfectness. As a consequence, we have interesting estimates of the Hausdorff dimensions of the Julia sets of a complex dynamics, or of the limit set of a Kleinian group.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 谷口 雅彦: "Bloch topology of the universal Teichmuller space" Topology and Teichmuller Spaces. 279-293 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 谷口 雅彦: "Sullivanの辞書、Teichmuller Spaces,そして中心予想" 数理解析研究所講究録. 959. 34-41 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 谷口 雅彦: "Klein群とCaratheodory収束" 数理解析研究所講究録. 967. 92-99 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 谷口 雅彦: "双局幾何学への招待" 培風館, 186 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masahiko Taniguchi: "Bloch topology of the universal Teichmuller space" Topology and Teichmuller Spaces, World Scientific. 270-293 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masahiko Taniguchi: "Sullivan's dictionary, Teichmuller spaces and central, conjectures" RIMS Kokyuroku. 959. 34-41 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masahiko Taniguchi: "Kleinian groups and Caratheodory convergence" RIMS Kokyuroku. 967. 92-99 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masahiko Taniguchi and Yoshihide Okumura: An introduction to hyperbolic geometry. Baihukan, 186 (1996)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi