• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

CONSTRUCTION OF MODEL-BASED FAULT DIAGNOSIS SYSTEMS ROBUST TO MODELING ERROR

Research Project

Project/Area Number 08455199
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 計測・制御工学
Research InstitutionKYUSHU INSTITUTE OF TECHNOLOGY

Principal Investigator

KUMAMARU Kousuke  KYUSHU INSTITUTE OF TECHNOLOGY,COMPUTER SCIENCE AND SYSTEMS ENGINEERING,PROFESSOR, 情報工学部, 教授 (30037949)

Co-Investigator(Kenkyū-buntansha) MAEDA Makoto  KYUSHU INSTITUTE OF TECHNOLOGY,COMPUTER SCIENCE AND SYSTEMS ENGINEERING,RESEARCH, 情報工学部, 助手 (00274556)
Project Period (FY) 1996 – 1998
KeywordsFault Diagnosis / Modeling / Nonlinear Systems / System Identification / Robust Fault Diagnosis / Threshold Decision / Parameter Estimation / Kullback Discrimination Information
Research Abstract

In this research project, for the purpose of construction of model-based fault diagnosis systems which are robust against to modeling error, we have investigated on the following subjects : 1). modeling and identification method for fault diagnosis of nonlinear dynamic systems, 2). evaluation method of model uncertainty(i.e. modeling error), 3). Fault detection scheme which is robust against to the modeling error, and 4). fault isolation scheme using knowledge information about the system to be diagnozed. The main results obtained for each subject arc as follows :
1). We have proposed a Quasi-ARMAX model which is equiped with both of flexibility and linear structure, by imbedding nonlinear characteristics of the system into the ARMAX model parameters, and developed its identification method. It has been confirmed through simulation studies that the model is useful for the fault detection in wide class of nonlinear systems and for STR-based adaptive control as well.
2). We have proposed a … More method for evaluating the modeling error due to linear approximation of nonlinear systems via the nonlinear terms in the Quasi-ARMAX modeling. Such the evaluation of modeling error is essential for the design of robust fault detection.
3). We have analysed the relation between the modeling error and the Kullback Discrimination Information (KDI) which is used as the fault detection index, and developed a robust fault detection scheme based on the evaluation of modeling error. Another way of robust fault detection in nonlinear systems has been proposed based on multi-ARMAX models in the framework of the Quasi-ARMAX modeling and based on the analysis of the KDI index using the weighting coefficients of the multi-modeling. On the other hand, it is important issue to determine a resonable threshold value in the thrshold decision for fault detection. We have solved this problem by learning the probability density function of the KDI index using the data obtained from online identification of the system under the normal operation mode. As the result, a threshold value corresponding to a confidence revel of false alarm rate has been able to be detemined based on the learned probability density function of the KDI.Finally, as to the 4) research subject, it is still open problem due to the difficulty to estimate the physical parameters of the system through the Quasi-ARMAX modeling and identification procedures. Less

  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] K.Kumamaru: "Robust Fault Detection Using Index of Kullback Discrimination Information" Proc.of the 13 th IFAC World Congress. 205-210 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kumamaru: "A Method of Robust Fault Detection for Dynamic Systems By Using Quasi-ARMAX Modeling" Proc.of the 11 th IFAC Symposium on System Identification. 1157-1162 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kumamaru: "Fault Detection of Nonlinear Systems by Using Hybrid Quasi-ARMAX Models" Proc.of IFAC Symposium on Fault Detection,Supervision and Safety for Technical Processes. 1125-1130 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kumamaru: "Method for Threshold Setting in KDI-based Robust Fault Detection of Nonlinear Systems" Proc.of the 30th ISCIE International Symposium on Stochastic Systems Theory and Its Applications. in press (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Hu: "A Hybrid Quasi-ARMAX Modeling Scheme for Identification of Nonlinear Systems" Trans.of the Society of Instrument and Control Engineers. 34-8. 977-985 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Hu: "KDI-Based Robust Fault Detection in Presence of Nonlinear Undermodeling" Trans.of the Society of Instrument and Control Engineers. 35-2. 200-207 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kumamaru: "Chapter 17 entitled “Statistical Methods for Robust Change Detection in Dynamical Sysrems with Model Uncertainty"" Marcel Dekker Inc.:Book entitled “Statistical Methods in Control and Signal Processing", 453-479 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Hu, K.Kumamaru and K.Inoue.: "A Hybrid Robust Identification Using Genetic Algorithim and Gradient Method" Trans.of the Society of Instrument and Control Engineers. Vol.32, No.5. 714-721 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kumamaru, J.Hu, K.Inoue and T.Soderstrom: "Robust Fault Detection Using Index of Kullback Discrimination Information" Proc.of the 13th IFAC World Congress. June30-July5. 205-210 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Kumamaru and K.Inoue: "Adaptive Control of Nonlinear Stochastic Systems Based on a Hybrid Quasi-ARMAX Model" Proc.of the 28th ISCIE International Symposium on Stochastic Systems Theory and Its Applications. Nov.14-16. 149-154 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Kumamaru and K.Inoue: "A Hybrid Quasi ARMAX Modeling Scheme for Identification and Control of Nonlinear Systems" Proc.of the 35th Conference on Decision and Control. 1413-1418 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Maeda, K.Kumamaru, H.B.Zha and K.Inoue: "A Systematic Estimation of 3-D Surface Curvatures and Application to Image Segmentation" ICARCV'96 (International Conference on Control, Automation, Robotics and Computer Vision). TE3.4, (Dec.4-6). 1368-1372 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kumamaru, J.Hu, K.Inoue and T.Soderstrom: "A Method of Robust Fault Detection for Dynamic Systems by Using Quasi-ARMAX Modeling" Proc.of the 11 th IFAC Symposium on System Identification. 1157-1162 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Inoue, K.Kumamaru and S.Matsuoka: "Feature Extraction Method for EEG Waves by Using MAP Detector of Input Signals with Multi-Discrete-Level Amplitude" Proc.of the 11 th IFAC Symposium on System Identification. 1269-1274 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kumamaru, J.Hu, K.Inoue and T.Soderstrom: "Fault Detection of Nonlinear Systems by Using Hybrid Quasi-ARMAX Models" Proc.of the IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes. 1125-1130 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Hirasawa and K.Kumamaru: "A Hybrid Quasi-ARMAX Modeling and Identification Scheme for Nonlinear Systems" Research Reports on Information Science and Electronical Engineering of Kyushu University. Vol.2, No.2. 213-218 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Hirasawa and K.Kumamaru: "Fuzzy Models Embedding STR Controller for Nonlinear Stochastic Systems" Proc.of the 29 th ISCIE International Symposium on Stochastic Systems Theory and Its Applications. Nov.10-12. 51-56 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.hu, K.Kumamaru, K.Inoue and K.Hirasawa: "KDI-Based Robust Fault Detection Scheme for Nearly Linear Systems" Proc.of the 29 th ISCIE International Symposium on Stochastic Systems Theory and Its Applications. Nov.10-12. 13-18 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Hirasawa and K.Kumamaru: "A learning Network Based Modeling Scheme for Nonlinear Black-Box Systems" Proc.of the 7 th Intelligent System Symposium on Fuzzy, Artificial Intelligence, Neural Networks and Complex Systems. 217-222 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Maeda, K.Kumamaru, H.B.Zha and K.Inoue: "3-D Surface Recovery from Range Images by Using Multiresolution Wavelet Transform" Proc.of IEEE International Conference on Systems, Man, and Cybernetics. vol.4 (Oct.12-15). 3654-3659 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Maeda, K.Kumamaru, H.B.Zha and K.Inoue: "Surface Reconstruction Based on B-spline Functions and Its Application to Multiresolution Analysis" Proc.of the 29th ISCIE International Symposium on Stochasitic Systems Theory and Its Applications. Nov.10-12. 121-126 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Hirasawa and K.Kumamaru: "Quasi-Linear Adaptive Control Thory for Nonlinear Systems" Research Reports on Information Science and Electronical Engineering of Kyushu University. Vol.3, No.1. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Kumamaru, K.Inoue and K.Hirasawa: "A Hybrid Quasi-ARMAX modeling Scheme for Identification of Nonlinear Systems" Trans.of the Society of Instrument and Control Engineers. Vol.34, No.8. 977-985 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kumamaru, K.Inoue and S.Furukawa: "A Method for Threshold Setting in KDI-Based Robust Fault Detection of Nonlinear Systems" Proc.of the 30 th ISCIE International Symposium on Stochastic Systems Thory and Its Applications. Nov.4-6. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Hirasawa, J.Murata, M.Ohbayashi and K.Kumamaru: "Adaptive Control of Nonlinear Black-Box Systems Based on Universal Learning Networks" Proc.of the IEEE INternational Joint Conference on Neural Networks. 2453-2458 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Hirasawa, J.Murata, M.Ohbayashi and K.Kumamaru: "Identification of Nonlinear Black-Box Systems Based on Universal Learing Networks" Proc.of the IEEE International Joint Conference on Neural Networks. 2465-2470 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Maeda, K.Kumamaru, H.B.Zha and K.Inoue: "Surface Recovery by Using Regularizasion Theory and Its Application to Multiresolution Analysis" Proc.of the 14th Internation Conferenc on Pattern Recognition (ICPR). Vol.1 (Aug.16-20). 19-23 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Hu, K.Kumamaru, K.Inoue and K.Hirasawa: "KDI-Based Robust Fault Detection in Presence of Nonlinear Undermodeling" Trans.of the Society of Instrument and Control Engineers. Vol.35, No.2. 200-207 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi