1997 Fiscal Year Final Research Report Summary
Study on Fatigue Characteristics of Reinforced Concrete Structure under Various environment and its Application to Design
Project/Area Number |
08650533
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
土木材料・力学一般
|
Research Institution | Tottori University, Faculty of Engineering |
Principal Investigator |
INOUE Shoichi Tottori University Faculty of Engineering Associate Professor, 工学部, 助教授 (10032286)
|
Co-Investigator(Kenkyū-buntansha) |
KURODA Tamotsu Tottori University Faculty of Engineering Research Assistant, 工学部, 助手 (30263487)
YOSHINO Akira Tottori University Faculty of Engineering Lecture, 工学部, 講師 (40135835)
|
Project Period (FY) |
1996 – 1997
|
Keywords | Fatigue / Fatigue strength / Fatigue life / Shear fatigue / Flexural fatigue / Marine concrete structure / Surface treatment / Carbon fiber reinforced plastic sheet |
Research Abstract |
Fatigue characteristics of reinforced concrete beams were investigated under various corrosion environment including under fresh water and sea water and in air. Significant differences were observed in the fatigue strengths between the beams tested in water and those in air. That is, the fatigue strength at 2 * 10^6 cycles for the beams tested in water is smaller by 15 - 25% compared to that in air. This value in the region of shear span/ effective ratio, a/d=3.5 - 4.0 becomes smaller with increases in the value of a/d. The failure pattern of beams differs in air and in water and the failure pattern tends to occur as shear failure without the fatigue fracture of stirrup in water even though the same beam exhibits flexural failure in air. Shear failures may be separated into the shear compressive failure, the failure due to the fracture of tensile reinforcement at the point of intersection of the diagonal crack and the diagonal tensile failure (related to the value of a/d, the strength
… More
of concrete and the magnitude of the applied maximum load level). The fatigue test the beams which the bending span only was immersed in water was carried. According to the flexural fatigue failure observed from these test, the flexural failure in air was caused by the fracture of tensile reinforcement, but those in water was not only caused by the fracture of tensile reinforcement but by compressive fatigue failure of concrete in bending span. For the beams subjected to repetitive load under moisture condition the surface treatment and strengthening method using carbon fiber sheet has the effect of increasing in fatigue life. Static and fatigue tests were also conducted on strengthened reinforced concrete beams to investigate the type of failure, and deformation and strength characteristics of the beams, with the presence/absence of anchor bolts and the kind of strengthening materials (steel or CFRP (carbon fiber reinforced plastic) plate) used set as the factors. As a result, (1) the CRRP plate-bounded bemas, as compared with steel plate-bonded beams, were found to have 1) smaller crack widths and crack spacings under identical loadings, 2) smaller deflection and toughness at failure, and 3) larger fatigue strength, and (2) the type of fatigue failure differs depending on the kind of plate, presence of anchor bolts and the magnitude of the applied load. Lastly, from the point of the mechanism of shear fatigue failure tested in water, the shear force component carried by concrete decreases with increases in the number of repetitive loading. Though the shear force component carried by stirrups increases with increases in the number of repetitive loading, the stirrup strain was in pre-yield range. Less
|
Research Products
(13 results)