• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

GEOMETRY OF STOCHASTIC DIFFERENTIAL EQUATIONS

Research Project

Project/Area Number 09044095
Research Category

Grant-in-Aid for international Scientific Research

Allocation TypeSingle-year Grants
SectionJoint Research
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

KUNITA Hiroshi  Kyushu Univ., Grad.Sch.Math., Professor, 大学院数理学研究科, 教授 (30022552)

Co-Investigator(Kenkyū-buntansha) WATANABE Shinzo  Kyoto Univ., Dept.Math., Professor, 大学院理学研究科, 教授 (90025297)
OGURA Yukio  Saga Univ., Dept.Math., Professor, 理工学部, 教授 (00037847)
SUGITA Hiroshi  Kyushu Univ., Grad.Sch.Math., Associate Prof., 大学院数理学研究科, 助教授 (50192125)
TANIGUCHI Setsuo  Kyushu Univ., Grad.Sch.Math., Associate Prof., 大学院数理学研究科, 助教授 (70155208)
SATO Hiroshi  Kyushu Univ., Grad.Sch.Math., Professor, 大学院数理学研究科, 教授 (30037254)
Project Period (FY) 1997 – 1998
KeywordsStochastic differential equations / Stochstic differential geometry / Stochastic analysis / Malliavin calculus / Harmonic maps
Research Abstract

In September 1997, including 5 foreign investigators, we gathered together at Kyushu Univ.and discussed various problems concerning stochastic differential equations and stochastic analysis and geometry of infinite dimensional spaces.Also in September 1998, with 3 foreign participants, we discussed stochastic partial differential equations and related analysis. We obtained the following results.
1)Stochastic differential equations on a manifold enable us to define a connect ion on the manifolds. Many proeprties of stochastoic flows can be interpreted through the connection (K.D.Elworthy)
2)We studied an ordinary differential equation with rough path without the Lipschits continuity. It enabled us to apply the stochastic differential equations driven by a Brownian motion. (T.Lyons)
3)Geometry of the loop group. As a typical infinite dimensional group, we studied the loop group which is closely related to the Brownian motion. We discussed the possibility of canstructiong the geometry on the loop group, defining a connection on it. (P.Malliavin)
4)We extend the known L(2) theory of stochastic partial differential equations to that of L(p) theory and obtained a sharper result on the smoothmess of the soluti on. (Krylov)
5)By using anticipating integral (Skorohod integral) and Malliavin calculus, we obtained a new result on the fundamental solution of a stochastic partial differential equation (Nualart)

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 国田寛: "Infinitesimal genelators of nonhomogeneous convolution semigroups on Lie groups" Osaka Math. J.34. 233-264 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 国田寛: "Infinitesimal genelators of random positive semigroups" Taiwanese J. Math.1. 371-387 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 谷口説男: "Analytic functions Cauchy formula. and stationary phase on a real abstract Wiener space" J.Funct Anal.143・2. 470-528 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 谷口説男: "On the exponential decay of oscillatory integrals on an abstract Wiener space" J.Funct Anal.154. 423-443 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 杉田洋: "Holomorphic Wiener functions" Proc. Taniguchi intern workshop. 399-415 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 杉田洋: "Limit theorem for symmetric statistics with respect to Weyl transformation" 京大紀要. 38・4印刷中. (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroshi Kunita: "Infinitesimal generators of nonhomogeneous semigroups on Lie groups" Osaka Math.J.34. 233-264 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Kunita: "Infinitesimal generators of random positive semigroups" Taiwanese J.Math.1. 371-387 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Setsuo Taniguchi: "Analytic functions, Cauchy formula, and stationary phase on a real abstract Wiener space(with Malliavin, Paul)" J.Funct.Anal.143 No.2. 470-528 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Setsuo Taniguchi: "On the exponential decay of oscillatory integrals on an abstract Wiener space" J.Funct.Anal.154. 424-443 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Sugita: "Holomorphic Wiener Function" New Trends in Stoch.Analysis, Proc.Taniguchi Intern.workshop Charingworth Manor, Sept.21-27,1994 World Scientific. 399-415 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Sugita: "Limit theorem for symmetric statistics with respect to Weyl transformation : Disappearance of dependency, with S.Takanobu" Jour.Math.Kyoto Univ.38-4. (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi