• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

A collective study of algebraic combinatorics

Research Project

Project/Area Number 09304004
Research Category

Grant-in-Aid for Scientific Research (A).

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

BANNAI Eiichi  Kyushu U.Facuety of Math, Professor, 大学院・数理学研究院, 教授 (10011652)

Co-Investigator(Kenkyū-buntansha) MUUEMOSA Akihiro  Kyushu U.Facuety of Math, Assoc.Prof., 大学院・数理学研究院, 助教授 (50219862)
KOIKE Masao  Kyushy U.Facuety of Math, Professor, 大学院・数理学研究院, 教授 (20022733)
BANNAI Etsuko  Kyushu U.Facuety of Math, Assoc.Prof., 大学院・数理学研究院, 助教授 (00253394)
YAMAHI Hiroyoski  Kumamoto Univ.Faclf.Scii.Professor, 理学部, 教授 (60028199)
SUZUKI Hiroshu  International Chiaistian U.Professor, 教養学部, 教授 (10135767)
Project Period (FY) 1997 – 2000
KeywordsAlgebraic combinatorics / associationscheme / spin model / spherical design / modular form / code / finite ring / codes over finite alrelian group
Research Abstract

The main purpose of this grant was to support the overall developments of the research in algebraic combinatorics in Japan, by supporting the expenses of speakers and participants who attended the symposiums in this and related areas. Each year, we have about 2 large meetings and some smaller workshops. These large meetings were : the 14th (Mitaka, Tokyo), 15th (Kanazawa), 16th (Fukuoka) and 17 th (Tsukuba) Algebraic Combinatorics Symposiums ; and the conferences on algebraic combinatorics and/or related subjets which were held in RIMS annually for the last several years.
The current activities of algebraic combinatorics in Japan is very active and successful. We have had quite notable developments, in particular, on the subjects such as classification problems of association schemes and distance-regular graphs ; on spherical designs, on spin models, and on Terwilliger algebras and its connections with representation theory. One of the main research subjects in the close neighborhood of the principal investigator has been the study of codes over various finite rings and finite abelian groups, and then to apply these results to the studies of modular forms. We have obtained various results on self-dual codes and Type II codes over various rings. In addition, we have classified the finite index subgroups of SL (2, Z) whose ring of modular forms is isomorhpic to a polynomial ring. We have also started the study of modular forms of fractional weights, and then we found an interesting result (Bannai-Koike-Munemasa-Sekiguchi) on the modular forms of weghts 1/5-integers of Γ (5). We are currently continuing to work on further generalizations in this direction. The principal investigator has also started to work on the character tables of association schemes and trying to look at the object, by looking at them as a finite version of modular forms. Also, the principal investigator has started to study the modular data of finite groups as well as their modular invariants.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] Ei.Bannnai,Et.Bannai,F.Jaeger: "On spin models, modular invariance, and duality"J.of Algebraic Combinatorics.. 6. 203-228 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Eiichi Bannai: "Modular invariance property of association schemes, Type II codes over finite rings and finite abelian groups, and reminscences of Francois Jaeger(a survey)"Ann.Inst.Fourier. 49. 763-782 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ei.Bannnai,S.T.Dougherty,M.Harada and M.Oura,: "Type II codes, even unimodular lattices and invariant rings"IEEE Trans.Inform.Theory. 45. 1194-1205 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ei.Bannai,Et.Bannai,M.Ozeki and Y.Teranishi: "On the ring of simultaneous invariants for the Gleason-MacWilliams group"Europ.J.Combinatorics. 20. 619-627 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Eiichi Bannai: "An introduction to association schemes Methods of discrete mathematics"Quad.Mat.,5,Aracne,Rome. 5. 1-70 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ei.Bannai,M.Koike,A.Munemasa,and J.Sekiguchi: "Some Results on Modular Forms,-Subgroups of the Modular Group Whose Ring of Modular Forms is a Polynomial Ring,"Advanced Studies in Pure Mathematics, to appear. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 坂内英一,坂内悦子: "球面上の代数的組合せ理論"シュプリンガー東京、. xvi+367 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] P.Orlik and H.Terao: "Arrangements and hypergeometric integrals, JMS Memoir"Mathematical Society of Japan. (vi)+112 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ei.Bannai, Et.Bannai and Francois Jaeger: "On spin models, modular invariance, and duality"J.of Algebraic Combinatorics. 6. 203-208 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ei.Bannai: "Modular invariance property of association schemes, Type II codes over finite rings and finite abelian groups, and reminscences of Francois Jaeger (a survey)"Ann.Inst.Fourier. 49. 763-782 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ei.Bannai, S.T.Dougherty, M.Harada and M.Oura: "Type II codes, even unimodular lattices and invariant rings"IEEE Trans.Inform.Theory. 45. 1194-1205 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ei.Bannai, Et.Bannai, M.Ozeki and Y.Teranishi: "On the ring of simultaneous invariants for the Gleason-MacWilliams group"Europ.J.Combinatorics. 20. 619-627 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ei.Bannai: "An introduction to association schemes, Methods of discrete mathematics (Braunschweig, 1999)"Quad.Mat., 5, Aracne, Rome. 1-70 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ei.Bannai, M.Koike, A.Munemasa, J.Sekiguchi: "Some Results on Modular Forms, -Subgroups of the Modular Group Whose Ring of Modular Forms is a Polynomial Ring"Advanced Studies in Pure Mathematics. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] P.Orlik and H.Terao: "Arrangements and hypergeometric integrals"JMS Memoir, 9, vi+112pp., Japan Mathematical Society. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ei.Bannai and Et.Bannai: "Algebraic combinatorics on spheres"Springer-Tokyo. (xvi+367pp) (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi