• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Radon transformation in Nevanlinina theory and Diophantire approximation

Research Project

Project/Area Number 09304007
Research Category

Grant-in-Aid for Scientific Research (A).

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

KOBAYASHI Ryoichi  Graduate School of Mathematics, Nagoya University, Professor, 大学院・多元数理科学研究科, 教授 (20162034)

Co-Investigator(Kenkyū-buntansha) NOGUCHI Junjiro  Graduate School of Mathematical Science, Nagoya University, Professor, 大学院・数理科学研究科, 教授 (20033920)
SATO Takeshi  Graduate School of Mathematics, Nagoya University, Assistant Professor, 大学院・多元数理科学研究科, 助手 (60252219)
OHSAWA Takeo  Graduate School of Mathematics, Nagoya University, Professor, 大学院・多元数理科学研究科, 教授 (30115802)
Project Period (FY) 1997 – 2000
KeywordsNevanlinna theory / Diophantine geometry / Lemma on logauthmic derivative / integral geometry / Radon transformation
Research Abstract

The second main conjective is the ultimate purpose of the Nevanlinna theory. In this research, I proposed several ideas of the "conjectural geometry" unifying Nevanlinna theory and Diophantive approximation through the attempt toward the second main conjecture. The analogy between Castan-Ahlfors-Weyl theory of holomorphic curves in Pn and the sulpace theorem of Schmidt on Diophantino approximation on projective spaces is ohsewed not only in their statements but also in their profs. The essence of the analogy lies in the idea of the "Radon-transformation" in integral geomeyty, In this research, I was able to establish a kind of "Radon-transform" which lies behind both Nevanlinna theory and Diophantine approximation. One advantage of this "Radon-transform" is the following : through this transformation we will be able to separate the part of the Diophantine geometry which is completely analogous to the part of Nevanlinna theory in which the lemma on logarithmic derivative plays an essent … More ial role. This part in Diophantine geometry is most number-theoretic and the theorems of Diophantine approximation of Roth-Schmidt-Faltings type, as well as Mihkowski-Bombieri-Vasler "geometry of numbers" play the most enential role. This is most different from holomorphic case, but never the less the result is completely analogous to the lemnia on loganithmic derivature. On the other hand, there was a big progress on the attempt toward 2nd main conjecture. Namely I discovered the geometric framework of n independent commutative holomorphic vector fields and the singularity caused by introducing such vector fields on "noncommutative" projective varieties. The wronskian formalism is possible in terms of these n commutative vector fields. As a result, the difficulty is localized in "singularities" and I was able to establish a new lemma on loganthmic derivative ("projective version") to analyze holomorphic curves in the presence of "singularities". I hope this will provide a new method in complex algebraic geometry. Less

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] R.Kobayashi: "Holomorphic cures in Abelian varieties : the 2^<nd> main theorem and applications;"Japanese J.Math. 26-1. 129-152 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Kobayashi and Y.Itokawa: "Minimizing currents in open manifolds and the n-1 homology of non-negatively Ricci curved manifolds"Amer.J.Math. 121. 1253-1278 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Kobayashi and M.Henmi: "Hooke's law in statistical manifolds and divergences"Nagoya Math.J.. 159. 1-24 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Kobayashi: "Nevanlima's lemma on-logarithmic derivative and integral geometry"Nagoya Math.J.. (発表予定). 10 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Kobayashi: "Methods of integral geometry in Nevanlima theory, lemma on logarithmic derivative and a program toword the 2^<nd> main theorem"Sugaku Exp.AMS. (発表予定). 50 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林亮一: "リッチフラットケーラー計量の幾何学と解析学"培風館(発表予定). 300

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林亮一: "ネヴァンリンナ理論における積分幾何的方法と対数微分の補題"森脇淳 編「ロジックと代数幾何」収録. 50 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Kobayashi and Y.Itobawa: "Minimizing currents in open manifolds and the n-1 homology of non-negutudy Ricci curved manifolds"Amer.J.Math. 121. 1253-1278 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Kobayashi: "Holomorphic curves in Abelian varieties the 2nd main theorem and applications"Japanese J.Math. 26-1. 129-152 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Kobayashi and M.Henmi: "Hooke's law in statislical manifolds and divergences"Nagoya Math.J. 159. 1-24 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Kobayashi: "Nevanlinna's lemma on loganithmic derivative and integral geometry"Nagoya Math.J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Kobayashi: "Mehtods of integral geometry in Nevanlinna theory, lemma on logarithmic derivative and a program toward the 2nd main theorem"Sugaku Exp.AMS. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Kobayashi: "Methods of integral geometry in Nevanlinna theory and lemma on loganithmic derivative"Proc.Symp "Logic and algebraic Geometry"ed. A.Moriwaki. (in Japanese).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Kobayashi: "Geometry and Analysin of Ricci-flat Kuhlor metrics"Baifukan publ (to appear)(English traslation will appear in vieweg pull.)(in Japanese).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi