• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Differential operators of gradient type on symmetric spaces and representations of Lie algebras

Research Project

Project/Area Number 09440002
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHokkaido University

Principal Investigator

YAMASHITA Hiroshi  Hokkaido Univ. Grad. School of Sci., Asso. Prof., 大学院・理学研究科, 助教授 (30192793)

Co-Investigator(Kenkyū-buntansha) SHIBUKAWA Youichi  Hokkaido Univ. Grad. School of Sci., Asso. Prof., 大学院・理学研究科, 助手 (90241299)
SAITO Mutsumi  Hokkaido Univ. Grad. School of Sci., Asso. Prof., 大学院・理学研究科, 助教授 (70215565)
YAMADA Hiro-fumi  Hokkaido Univ. Grad. School of Sci., Asso. Prof., 大学院・理学研究科, 助教授 (40192794)
NISHIYAMA Kyo  Kyoto Univ. Fac. Of Int. Hum. St., Asso. Prof., 総合人間学部, 助教授 (70183085)
HIRAI Takeshi  Kyoto Univ. Grad. School of Sci., Prof., 大学院・理学研究科, 教授 (70025310)
Project Period (FY) 1997 – 1999
Keywordssemisimple Lie group / Harish-Chandra module / nilpotent orbit / differential operator of gradient type / multiplicity / generalized Whittaker model / discrete series / highest weight representation
Research Abstract

The purpose of this project is to study the embeddings of irreducible Harish-Chandra modules into various induced representations of a semisimple Lie group, by using the invariant differential operators of gradient type on certain homogeneous vector bundles over the Riemannian symmetric space. The kernel of such a differential operator realizes the maximal globalization of the dual Harish-Chandra module, and the determination of the embeddings in question is reduced to specifying the equivariant functions in this kernel space.
First, the generalized Gelfand-Graev representations form a family of induced modules parametrized by the nilpotent orbits. Concerning the Harish-Chandra modules with highest weights for a simple Lie group of Hermitian type, the generalized Whittaker models associated with the holomorphic nilpotent orbits are specified. Namely, it is shown that each highest weight module embeds, with nonzero and finite multiplicity, into the generalized Gelfand-Graev representation attached to the unique open orbit in its associated variety. As for the unitary highest weight module, the space of the embeddings can be completely described in terms of the principal symbol of the differential operator of gradient type.
Second, we consider a simple Lie group of quaternionic type. The 0th n-homology spaces, or equivalently, the embeddings into the principal series, of the Borelde Siebenthal discrete series are described, by using the Schmid differential operator of gradient type. We find in particular that the n-homology space has exactly two exponents if the real rank of the group is not one.
Third, the relationship between the multiplicities in the associated cycles and the differential operators of gradient type are clarified for certain Harish-Chandra modules with irreducible associated varieties. The multiplicity can be written down by means of the principal symbol of a gradient type differential operator.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Yamashita H.: "Description of the associated varieties for the discrete series representations of a semisimple Lie group"Comment.Math.Univ.St.Paul.. 47・1. 35-52 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yamashita H.: "Associated variety, Kostont-Sekiguchi correspondence, and locally free V(π)-action on Harish-Chandra modules"J.Math.Soc.Japan. 51・1. 129-149 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yamashita H.: "Generalized Whittaker models and n-homology for some small irreducible representations of simple Lie groups"数理解析研究所講究録. 1124. 86-105 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yamashita H.: "Reduced Schur henctions and Littlewood-Richardson coefficients"J.of London Math.Soc.(2). 59・2. 396-406 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Saito M.: "Hypergeometric polynomials and integer programming"Compositio Math.. 115・2. 185-204 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nishiyama K.: "Bernstein degree of singular unitary highest weight representations of the metaplectic group"Proc.Japan Acad.. 75・2. 9-11 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Yamashita: "Description of the associated varieties for the discrete series representations of a semisimple Lie group"Comment. Math. Univ. St. Paul.. 47-No.1. 35-52 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Yamashita: "Associated variety, Kostant-Sekuguchi correspondence, and locally free U(n)-action on Harish-Chandra modules"J. Math. Soc. Japan. 51-No.1. 129-149 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Yamashita: "Generalized Whittaker models and n-homology for some small irreducible representations of simple Lie groups"RIMS Ko^kyu^roku. Vol.1124. 86-105 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Yamashita: "functions and Littlewood-Richardson coefficients"J. of London Math. Soc.. 59-No.2. 396-406 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Saito: "Hypergeometric polynomials and integer programming"Compositio Math.. 115-No.2. 185-204 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Nishiyama: "Bernstein degree of singular unitary highest weight representations of the metaplectic group"Proc. Japan Acad.. 75 No.2. 9-11 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi