• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Complex Manifolds and Gauge Theory

Research Project

Project/Area Number 09440027
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTOHOKU UNIVERSITY

Principal Investigator

BANDO Shigetoshi  Graduate School of Science, Tohoku Univ., Prof., 大学院・理学研究科, 教授 (40165064)

Co-Investigator(Kenkyū-buntansha) ISHIDA Masanori  Graduate School of Science, Tohoku Univ., Prof., 大学院・理学研究科, 教授 (30124548)
URAKAWA Hajime  Graduate School of Information Science, Tohoku Univ., Prof., 大学院・情報科学研究科, 教授 (50022679)
NISHIKAWA Seiki  Graduate School of Science, Tohoku Univ., Prof., 大学院・理学研究科, 教授 (60004488)
IZEKI Hiroyasu  Graduate School of Science, Tohoku Univ., Assoc. Prof., 大学院・理学研究科, 助教授 (90244409)
TAKAGI Izumi  Graduate School of Science, Tohoku Univ., Prof., 大学院・理学研究科, 教授 (40154744)
Project Period (FY) 1997 – 1999
KeywordsEinstein / harmonic maps / Carnot groups / Laplace operators on graphs / toric varieties / reaction-diffusion system / complex Kleinian groups / Futaki character
Research Abstract

Bando studied the existence problems of Einstein metrics on Kahler manifolds and holomorphic complex vector bundles. It is believed that there must be good relations between the existence of Einstein metrics and stabilities. He obtained a useful formula on a functional which connects them. He also wrote a paper which shows how Green functions can be used to obtain harmonic geometric objects.
Nishikawa, jointly with Keisuke Ueno (Yamagata Univ.), studied the Dirichlet problem at infinity for harmonic maps between homogeneous spaces of negative curvature, and the complex analyticity of harmonic maps between complex hyperbolic spaces. A proper harmonic map which is CィイD14ィエD1 upto boundary and gives non-degenerate CR map on the boundaries is shown to be holomorphic.
Urakawa continued to study harmonic maps, Yang-Mills connections and etc., and generalized the methods to work on graphs. On finite or infinite graphs, he obtained results on the spectra of Laplace operators, the estimates on Gr … More een functions and the analog of harmonic maps.
Ishida studied real fans which generalize (rational) fans which are closely related to toric varieties. He introduced a category of graded modules of exterior algebra over real fans and defined a dualizing functor. He obtained counterparts of Serre duality and Poincare duality.
Takagi studied a reaction-diffusion system which is posed by A. Gierer and H. Meinhardt as a fundamental model of morphogenesis and a constrained variational problem on a bending functional which gives a model of the shape transformation of erythrocyte.
Izeki studied entoropy rigidity and convex compactness of Kleinian groups acting on real space forms. He obtained a partial resolution of a conjectire on the inequality between the Hausdorff dimension of the limit sets of convex co-compact Kleinian groups and the cohomological dimension of the groups.
Nakagawa studied Bando-Calabi-Futaki characters and generalized some of properties which were known to Fano manifolds to general projective manifolds and their Kahler classes. Under certain assumption, he showed a vanishing of Bando-Calabi-Futaki characters on the Lie algebra of unipotent groups and the existence of lifts of Bando-Calabi-Futaki characters to group characters. Less

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] S.Nishikawa: "Homogeneous manifolds of negative curvature and harmonic maps"数理解析研究所講究録. 1104. 137-144 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Urakawa: "On invariant projectively flat affine connections"Hokkaido Math.J.. 28. 333-356 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Urakawa: "Eigenvalue comparison theorems of the discrete Laplacians for a graph"Geometriae Dedicata. 74. 95-112 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Katsuda and H.Urakawa: "The Faber-Krahn type isoperimetric inequalities"Tohoku Math.J.. 51. 267-281 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I.Takagi: "Stability of spiky patterns in an activator-inhibitor system"Proceedings of the Workshop : Nonlinear Partial Differential Equations and Related Topics. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nakagawa: "Bando-Calabi-Futaki characters of Kahler orbifolds"Math.Ann.. 314. 369-380 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 西川青季: "幾何学的変分問題,岩波講座「現代数学の基礎」第28巻"岩波書店. 220 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 石田正典: "トーリック多様体入門"朝倉書店. (出版予定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Nishikawa: "Homogeneous manifolds of negative curvature and harmonic maps"Research Institute for Mathematical Sciences, Kokyuroku. 1104. 137-144 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Urakawa: "On invariant projectively flat affine connections"Hokkaido Math. J.. 28. 333-356 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Urakawa: "Eigenvalue comparison theorems of the discrete Laplacians for a graph"Geometriae Dedicata. 74. 95-112 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Katsuda and H. Urakawa: "The Faber-Krahn type isoperimetric inequalities for a graph"Tohoku Math.. 51. 267-281 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Takagi: "Stability of spiky patterns in an activator-inhibitor system"in the Proceedings of the Workshop : Nonlinear Partial Differential Equations and Related Topics, Edited by S. Ei, S. Jimbo, Y. Morita and S. Yotsutani, Joint Research Center for Science and Technology of Ryokoku University. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Nakagawa: "Bando-Calabi-Futaki characters of Kahler orbifolds"Math. Ann.. 314. 369-380 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Seiki Nishikawa: "Geometric Variational Problem, Iwanami Series in Modern Mathematics 28"Iwanami Shoten. 220 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masanori Ishida: "An introduction to toric varieties"(to be published).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi