• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1997 Fiscal Year Annual Research Report

原始形式と周期写像

Research Project

Project/Area Number 09440031
Research InstitutionKyoto University

Principal Investigator

斎藤 恭司  京都大学, 数理解析研究所, 教授 (20012445)

Co-Investigator(Kenkyū-buntansha) 古田 幹雄  京都大学, 数理解析研究所, 助教授 (50181459)
中山 昇  京都大学, 数理解析研究所, 助教授 (10189079)
柏原 正樹  京都大学, 数理解析研究所, 教授 (60027381)
宮岡 洋一  京都大学, 数理解析研究所, 教授 (50101077)
森 重文  京都大学, 数理解析研究所, 教授 (00093328)
Keywords原始形式 / 平坦座標 / 楕円ルート系
Research Abstract

周期写像に対する逆写像との関連で、楕円ルート系に関する研究が大きく進展した。以下に列挙する。
1)楕円diagramを用いて、楕円Weyl群、楕円Artin群楕円Hecke環を生成系及び関係系により記述する事(斎藤-竹林[1]、山田(preprint))。
2)楕円リー環をChevalley基底とSerre関係により決定し、頂点作用素代数との関係を明らかにする事(斎藤-吉井[2])。
3)楕円エータ積及び楕円L-函数を導入し、そのFourier-Dirichlet係数が非負になる事とエータ積がカスプ形式にならない事との同値性を証明した事(更に、この事が起きるのはD^<(1,1)>_4,E^<(1,1)>_6,E^<(1,1)>_7又はE^<(1,1)>_8のいずれかのタイプの楕円ルートの時である。)(斎藤[3])
なお、これ等の仕事に関連して、楕円リー環の表現とその指標を計算する試みが庵原、脇本、斎藤等により始められている一方、楕円不変式環のθ-函数による再度の基礎付けが佐竹により進められている。
楕円ルート系の場合を越えた一般的なルート系を構成する際の代数的な予備研究を行ったのが[4]である。
[5]ではRiemann面の一意化の立場から構成されるTeichmuller空間に入るZ-shemeの構造を論じている。

  • Research Products

    (5 results)

All Other

All Publications (5 results)

  • [Publications] K.Saito: "Extended Affine Root System III (eliptic Weyl groups)" Publ.RIMS. 33. 301-329 (1997)

  • [Publications] K.Saito: "Extended Affine Root System IV (elliptic Lie algebra)" (in preparation).

  • [Publications] K.Saito: "Extended Affine Root System V (elliptic eta-products and L-functions)" (in preparation).

  • [Publications] K.Saito: "Duality for Regular Systems of Weights" "Topological Field Theory,Primitive Forms and Related Topics",Proc.Taniguchi,Birkhauser. (to appera).

  • [Publications] K.Saito: "Character Variety of Representations of a Finitely Generated Group in SL_2" Proc.Taniguchi,World Scientific. 253-264 (1996)

URL: 

Published: 1999-03-15   Modified: 2014-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi