• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

On multiplicative genera related to deformation of smooth manifolds

Research Project

Project/Area Number 09440036
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

KAMATA Masayoshi  Kyushu Univ., G.S.of Math., Professor, 大学院・数理学研究科, 教授 (60038495)

Co-Investigator(Kenkyū-buntansha) HARA Tamio  Tokyo Sci.Univ., Mathematics Research Associate, 理工学部, 助手 (10120205)
NISHI Haruko  Kyushu Univ., G.S.of Math., Research Associate, 大学院・数理学研究科, 助手 (90274430)
TAKATA Toshie  Kyushu Univ., G.S.of Math., Assistant Professor, 大学院・数理学研究科, 講師 (40253398)
YOKOTA Yosiyuki  Kyushu Univ., G.S.of Math., Assistant Professor, 大学院・数理学研究科, 講師 (40240197)
IWASE Norio  Kyushu Univ., G.S.of Math., Associate Professor, 大学院・数理学研究科, 助教授 (60213287)
Project Period (FY) 1997 – 1998
Keywordscobordism group / SKgroup / genus / framed cobordism / LS-category / Hopf invariant / homotopy group / quantum invariant
Research Abstract

We studied characterization of smooth manifolds by topological invariants. We mainly invetigated multiplicative genera, Euler numbers, quantum invariants and so on. Further-more we studied the related generalized cohomology and homotopy group. Kamata obtained the condition of cobordism equivalence between projective spaces associated to U(1) -representation spaces. Lie groups are stably frat and the framed cobordism classes are in-terpreted as the stable homotopy classes of a sphere. Kamata and Minami used the J-group to prove that the special orthogonal group SO(2n) is the boundary of a compact smooth manifold with the stably trivial tangent bundle. LS category is related to the estimate of the number of critical points of the Morse function on a smooth manifold. Iwase defined the generalized Hopf invariant concerned with the LS category and showed many counterexam-pies of Ganea conjecture which is a open question for LS category. Hara treated the surgery of equvariant Z_<2r> manifolds and he completely determined the classes of manifolds under the classification concerned with cutting and pasting. Maruyama and Arkowitz studied the classes of seif-homotopy equivalence with the homological condition and showed the method of computation of the number of the classes. It is a conjecture that the quantum invariants of 3-dimensional manifolds defined for a compact Lie group are evaluated in an algebraic integer ring. Yokota and Takata proved that the conjecture is correct for the special unitary group SU(N). Nishi discussed the hyperbolization of the configuration space of n(<greater than or equal>5) marked points with weights in the projective line up to projective transformat

  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] 鎌田 正良: "On equivariant vector fields on a sphere" 研究集会報告集「多様体とホモトピー」九州大学. 78-86 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岩瀬 則夫: "Adjoint action of a finite loop space" Proc,Amer.Math.Soc.125. 2753-2757 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 横田 佳行: "Skeins and quantum SU(N)invariants of 3-manifolds" Mathematsche Annalen. 307. 109-138 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 高田 敏恵: "On quantum PSU(n)invariants for Seifert manifolds" J.Knot Theory Ramifications. 6 No.3. 417-426 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 横田 佳行: "The Kauffman polynomial of alternating links" Topology and its application. 65. 229-236 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 原 民夫: "Cutting and pasting of G manifolds with boundary" Kyushu Journal of Mathematics. 51. 165-178 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masayoshi Kamata and Haruo Minami: "The special orthogonal groups SO (2n) as framed bundaries" Kyushu J.Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masayoshi Kamata: "On equivariant cobordism classes of projective spaces for complex U (1) -representation spaces" Kyushu J.Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masayoshi Kamata and Yasuyuki Yoshihara: "On equivariant vector fields on a sphere" Proceeding, Kyushu Univ.Manifolds and Homotopy. 78-86 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Norio Iwase: "A_*-method in Lusternik-Schnirelmann category" KYUSHU-MPS,Kyushu Univ.1998-13. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Norio Iwase: "Adjoint action of a finite loop space" Proc, Amer.Math.Soc.125. 2753-2757 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshiyuki Yokota: "Skeins and quantum SU (N) invariants of 3-manifolds" Mathematsche Annalen. 307. 109-138 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshiyuki Yokota: "The Kauffman polynomial of alternating links" Topology and Its Application. 65. 229-236 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshie Takata and Yoshiyuki Yokota: "On quantum PSU (n) invariants for Seifert manifolds" J.Knot Theory Ramifications. 6 No.3. 426-427 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kojima, H.Nishi and Y.Yamanoshita: "Configuration spaces of points on the circle and hyperbolic Dehn fillings II" Topology. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tamio Hara: "Equivariant SK invariants on Z_<2-> manifolds with boundary" Kyushu J.Math.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tamio Hara and Hiroaki Koshikawa: "Cutting and pasting of G manifolds with boundary" Kyushu J.Math.51. 165-178 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi